

Contents

Overview 1

Overview of ADO.NET 2

Connecting to a Data Source 11

Accessing Data with DataSets 13
Using Stored Procedures 28

Lab 3: Using ADO.NET to Access Data 37

Accessing Data with DataReaders 46
Binding to XML Data 53

Review 59

Module 3: Using
Microsoft ADO.NET to
Access Data

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, FrontPage, IntelliSense, Jscript, Outlook,
PowerPoint, Visual Basic, Visual InterDev, Visual C++, Visual C#, Visual Studio, and Windows
Media are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 3: Using Microsoft ADO.NET to Access Data 1

Overview

n Overview of ADO.NET

n Connecting to a Data Source

n Accessing Data with DataSets

n Using Stored Procedures

n Accessing Data with DataReaders

n Binding to XML Data

*****************************illegal for non-trainer use******************************

One of the reasons for the widespread use of Microsoft® Active Server Pages
(ASP) is that it facilitates access to data stores. ASP.NET expands on this
capability with the introduction of ADO.NET, which offers a rich suite of data
handling and data binding functions for manipulating all types of data.

After completing this module, you will be able to:

n Describe the Microsoft ADO.NET object model.

n Connect to a data source by using ADO.NET.

n Retrieve data from a database by using DataReaders and DataSets.

n Display the data from a database on the client by using list-bound controls.

n Customize the look of Repeater controls with templates.

n Use stored procedures to return Recordsets.

n Read data from an Extensible Markup Language (XML) file into DataSets .

There were many changes between the Beta 1 and Beta 2 versions of
ASP.NET with respect to data binding. For a detailed list of changes, see
Appendix A, in Course 2063B, Introduction to Microsoft® ASP.NET.

Note

2 Module 3: Using Microsoft ADO.NET to Access Data

u Overview of ADO.NET

n The ADO.NET Object Model

n Animation: Using ADO.NET to Access Data

n RecordSets vs. DataSets

n Using Namespaces

*****************************illegal for non -trainer use******************************

ADO.NET is not a revision of Microsoft ActiveX® Data Objects (ADO), but a
new way to manipulate data that is based on disconnected data and XML.
Although ADO is an important data access tool within ASP, it does not provide
all of the necessary features for developing robust and scalable Web
applications. In spite of ADO’s rich object model and relative ease of use, it is
connected by default, relies on an OLE DB provider to access data, and it is
entirely Component Object Model (COM)-based.

ADO.NET has been designed to work with disconnected datasets. Disconnected
datasets reduce network traffic.

ADO.NET uses XML as the universal transmission format. This guarantees
interoperability as long as the receiving component runs on a platform where an
XML parser is available. When the transmission occurs through XML, it is no
longer necessary that the receiver be a COM object. The receiving component
has no architectural restrictions whatsoever. Any software component can share
ADO.NET data, as long as it uses the same XML schema for the format of the
transmitted data.

In this section, you will learn about ADO.NET. You will learn about the new
and modified objects in ADO.NET. You will also learn about some of the new
namespaces that are included in ASP.NET.

 Module 3: Using Microsoft ADO.NET to Access Data 3

The ADO.NET Object Model

DataAdapter

Connection
DatabaseDatabase

Command

.ASPX Page

List-Bound
Control

List-Bound
Control

DataReader

Company:
Northwind Traders

Company:
Northwind Traders

.ASPX Page

DataViewDataView

DataSet

*****************************illegal for non-trainer use******************************

ADO.NET evolved from the ADO data access model. By using ADO.NET, you
can develop applications that are robust and scalable, and that can use XML.

ADO.NET has some of the same objects as ADO (like the Connection and
Command objects), and introduces new objects, such as the Dataset,
DataReader, and DataAdapter.

Connection Objects
Connection objects are used to talk to databases. They have properties, such as
DataSource , UserID, and Password, which are needed to access a particular
DataSource . Commands travel over connections, and result sets are returned in
the form of streams that can be read by DataReaders or pushed into DataSet
objects.

There are two kinds of connection objects in ADO.NET: SqlConnection and
OleDbConnection.

Command Objects
Command objects contain the information that is submitted to a database. A
command can be a stored procedure call, an update statement, or a statement
that returns results. You can also use input and output parameters and return
values. In ADO.NET, you can use two kinds of command objects:
SqlCommand and OleDbCommand.

4 Module 3: Using Microsoft ADO.NET to Access Data

DataReader Objects
A DataReader is a read-only/forward-only view on the data. It provides a
simple and lightweight way of traversing through recordsets. For example, if
you wanted to simply show the results of a search list in a Web page, using a
DataReader is an ideal way to accomplish this.

A DataReader is returned after executing a command. It works similarly to a
recordset in ADO, allowing you to simply loop through the records.

ADO.NET includes two types of DataReader objects: the SqlDataReader for
Microsoft SQL Server™ version 7.0 (or later) data, and the OleDbDataReader
for ADO data. The DataReader object is database-specific. The behavior for
the SqlDataReader may differ from the behavior for the OleDbDataReader
and additional DataReader objects that are introduced in the future.

You use the OleDbCommand and SqlCommand objects and the
ExecuteReader method to transfer data into a DataReader.

DataSet Objects
The DataSet is designed to handle the actual data from a data store. The
DataSet provides a rich object model to work with when passing data between
various components of an enterprise solution. The DataSet object is generic.
The behavior of a DataSet is completely consistent regardless of the underlying
database, SQL or OLE DB.

The DataSet object represents a cache of data, with database-like behavior. It
contains tables, columns, relationships, constraints, and data. Data coming from
a database, an XML file, code, or user input can be entered into DataSet
objects and converted into files, forms, or databases. As changes are made to
the DataSet, they are tracked in a way similar to the way changes are tracked in
a word processing document.

The DataSet object has a collection of DataTable objects. A DataTable
represents one table of in-memory data. It contains a collection of columns that
represents the table's schema. A DataTable also contains a collection of rows,
representing the data contained in the table.

You use the OleDbDataAdapter and SqlDataAdapter objects and the Fill
method to get data into a DataSet.

DataView Objects
A DataView provides a custom view of a data table. You can think of the
DataView as the equivalent of the ADO disconnected recordset, because it
contains a single view on top of the table data. You can use a DataView to
specify criteria for filtering and sorting a DataSet.

A DataSet is not a recordset. A DataView is more analogous to a
recordset.

Note

 Module 3: Using Microsoft ADO.NET to Access Data 5

DataAdapter Object
While the DataSet object provides a tool for in-memory data storage, you need
another tool to create and initialize the various tables. This tool is the
DataAdapter object. It represents a centralized console that hides the details of
working with connections and commands. The DataAdapter object allows for
the retrieval and saving of data between a DataSet object and the source data
store. It is responsible for pulling out data from the physical store and pushing it
into data tables and relations. The DataAdapter object is also responsible for
transmitting any update, insertion, or deletion to the physical database. You can
use four command objects to make any updates: UpdateCommand,
InsertCommand, DeleteCommand, and SelectCommand.

The DataAdapter object exists in two forms: SqlDataAdapter objects and
OleDbDataAdapter objects. The data source is SQL Server for
SqlDataAdapter objects and any other OLE DB provider for
OleDbDataAdapter objects.

6 Module 3: Using Microsoft ADO.NET to Access Data

Animation: Using ADO.NET to Access Data

******************** *********illegal for non-trainer use******************************

In this animation, you will learn how to access data by using ADO.NET and
how you can display that data in an ASP.NET page. To view the animation,
open the file 2063B_03A001.swf from the folder Media.

 Module 3: Using Microsoft ADO.NET to Access Data 7

Recordsets vs. DataSets

Transmit XML fileCOM marshallingTransmitting data

DisconnectedConnected or
disconnected

Data connections

Navigate via
relationships

Move row-by-rowMoving through data

Includes relationshipsBased on joinRelationships

Multiple tablesOne tableNumber of tables

DataSetRecordsetFeature

*****************************illegal for non-trainer use******************************

In ADO, the in-memory representation of database data is the recordset. In
ADO.NET, it is the DataSet. The DataSet contains a collection of tables and
knowledge of relationships between those tables. Each table contains a
collection of columns. These objects represent the schema of the DataSet. Each
table can then have multiple rows, representing the data held by the DataSet.
These rows track their original state along with their current state, so that the
DataSet tracks what kinds of changes have occurred. Additionally, the DataSet
provides persistence and de-persistence through XML.

There are important differences between recordsets and DataSets, which are
highlighted in the following table and detailed in the text that follows.

Feature Recordset DataSet

Number of tables One table Multiple tables

Relationships Based on join Includes relationships

Moving through data Move row-by-row Navigate via relationships

Data connections Connected or disconnected Disconnected

Transmitting data COM marshalling Transmit XML file

Number of Tables
An ADO recordset looks like a single table. If a recordset is to contain data
from multiple database tables, it must use a JOIN query, which assembles the
data from the various database tables into a single result table.

In contrast, an ADO.NET DataSet is a collection of one or more tables. The
tables within a data set are called data tables; specifically, they are DataTable
objects.

8 Module 3: Using Microsoft ADO.NET to Access Data

Relationships
Typically, a DataSet also contains relationships. A relationship within a
DataSet is analogous to a foreign-key relationship in a database. In ADO.NET,
a DataRelation represents the relationship.

Moving Through Data
In ADO.NET, the methods you use to read or modify data differ from the
programming methods you use in ADO in the following ways:

n In ADO, you scan sequentially through the rows of the recordset.

n In ADO.NET, you employ a navigation paradigm, moving from a row of
one data table to the corresponding row or rows of another data table by
following the relationship.

Data Connections
In ADO.NET, the DataSet provides disconnected access to database data. In
ADO, the recordset can provide disconnected access, but is typically used to
provide connected access.

Transmitting Data
To transmit an ADO disconnected recordset from one component to another,
you use COM marshalling. To transmit an ADO.NET data set, you simply
transmit an XML file.

 Module 3: Using Microsoft ADO.NET to Access Data 9

Using Namespaces

n Use the Import Construct to Declare Namespaces

n Namespaces Used with ADO.NET Include:

l System.Data

l System.Data.OleDb

l System.Data.SqlClient

l System.Data.XML

l System.Data.SqlTypes

<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

*****************************illegal for non-trainer use******************************

The Microsoft .NET Framework is an object-oriented system. When using
specific parts of the framework, you need to include references to the
appropriate namespace in your ASP.NET page.

When using ADO.NET from either Microsoft Visual Basic ® 7.0 or Microsoft
Visual C#™ , you must reference the System.Data namespace, plus either the
System.Data.OleDb or System.Data.SqlClient namespace, depending on the
data source you choose to use. System.Data provides the code facilities, while
System.Data.OleDb and System.Data.SqlClient are the namespaces for the
two managed providers.

In the C# programming language, you use the keyword Using to import a
namespace. In Visual Basic, you declare namespaces at the top of an ASP.NET
page, using the Import construct.

<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

10 Module 3: Using Microsoft ADO.NET to Access Data

The following table summarizes the list of available namespaces with
ADO.NET.

Namespace Contains

System.Data Base objects and types for ADO.NET

System.Data.OleDb Managed OLE DB data store objects

System.Data.SqlClient SQL Server specific implementations of ADO.NET
objects

System.Data.XML XML objects

System.Data.SqlTypes SQL data types

 Module 3: Using Microsoft ADO.NET to Access Data 11

Connecting to a Data Source

n Using SqlConnection

n Using OleDbConnection

Dim strConn As String = _
"server=localhost; uid=sa;pwd=; database=northwind"

Dim conn As SqlConnection = New SqlConnection(strConn)

Dim strConn As String = _
"server=localhost; uid=sa;pwd=; database=northwind"

Dim conn As SqlConnection = New SqlConnection(strConn)

Dim strConn As String = "Provider= SQLOLEDB.1; " & _
"Data Source=localhost; uid=sa; pwd=; " & _
"InitialCatalog=northwind;"

Dim conn As OleDbConnection = _
New OleDbConnection(strConn)

Dim strConn As String = "Provider= SQLOLEDB.1; " & _
"Data Source=localhost; uid=sa; pwd=; " & _
"InitialCatalog=northwind;"

Dim conn As OleDbConnection = _
New OleDbConnection(strConn)

*****************************illegal for non-trainer use******************************

When you connect to a database through an ASP.NET page, there are two
routes that you can take: use OLE DB or use the native SQL provider. The
native SQL provider is faster, but you must be using Microsoft SQL Server as
your database. If you are using Microsoft Access, Microsoft Excel, a comma-
delimited file, or some other data source, you must use the OLE DB provider.
You can use the OLE DB provider with a Microsoft SQL Server database;
however, it is not as fast as using the native SQL provider.

The Connection object defines how to connect to a specific data store.
The .NET framework provides two Connection objects: SqlConnection and
OleDbConnection. The SqlConnection object defines how to connect to
SQL Server databases and the OleDbConnection object allows you to establish
a connection to a database through an OLE DB provider.

Using SqlConnection
The following code illustrates how to create and open a connection to a
Microsoft SQL Server database by using the SqlConnection object.

Dim strConn As String = _
 "server=localhost;uid=sa;pwd=;database=northwind"
Dim conn As SqlConnection = New SqlConnection(strConn)

12 Module 3: Using Microsoft ADO.NET to Access Data

Using OleDbConnection
For the OLE DB Managed Provider, the connection string format is quite
similar to the connection string format used in OLE DB.

The following code illustrates how to create and open a connection to a
Microsoft SQL Server database by using OleDbConnection.

Dim strConn As String = "Provider=SQLOLEDB.1; " & _
 "Data Source=localhost; uid=sa; pwd=; " & _
 "Initial Catalog=northwind;"
Dim conn As OleDbConnection = New OleDbConnection(strConn)

We will be using SqlConnection objects for the examples in this module.
Implementation is slightly different for using OleDbConnection objects. For
more information about using OleDbConnection objects, search for
OleDbConnection in the Microsoft .NET Framework SDK documentation.

 Module 3: Using Microsoft ADO.NET to Access Data 13

u Accessing Data with DataSets

n Using DataSets to Read Data

n Storing Multiple Tables in a DataSet

n Using DataViews

n Displaying Data in the DataGrid Control

n Demonstration: Displaying Data in a DataGrid

n Using Templates

n Using the Repeater Control

n Demonstration: Displaying Data in a Repeater Control

*****************************illegal for non-trainer use******************************

ADO.NET provides two ways to access data, DataSets and DataReaders.

In this section, you will learn how to access data by using DataSets. You will
also learn about DataViews and displaying data in list-bound controls. At the
end of the section, you will learn how to customize a list-bound control by
using templates.

14 Module 3: Using Microsoft ADO.NET to Access Data

Using DataSets to Read Data

Dim cmdAuthors As SqlDataAdapter
cmdAuthors = New SqlDataAdapter _

("select * from Authors", conn)

Dim cmdAuthors As SqlDataAdapter
cmdAuthors = New SqlDataAdapter _

("select * from Authors", conn)

n Create the Database Connection

n Store the Query in a SqlDataAdapter

n Create and Populate the DataSet with DataTables

Dim ds As DataSet
ds = New DataSet()
cmdAuthors.Fill(ds, "Authors")

Dim ds As DataSet
ds = New DataSet()
cmdAuthors.Fill(ds, "Authors")

*****************************illegal for non-trainer use******************************

After you establish a connection to a database, you can access its data.

ADO.NET provides multiple ways to access data.

Using DataSets
The DataSet object is the centerpiece of ADO.NET. It represents a complete
set of data, including multiple, related tables, and constraints.

Although a DataSet stores data, you need DataAdapter objects to create and
initialize the various tables. You also need the Fill method to populate a
DataSet with the results from a query.

The Fill method takes two parameters: a DataSet instance and a string. The
DataSet instance represents the DataSet to be filled, and the string identifies
the DataTable that will be created inside the DataSet. A DataSet can contain
many DataTables. You use the string supplied to the Fill method to reference
the DataTable after it is created.

 Module 3: Using Microsoft ADO.NET to Access Data 15

The following code example illustrates how to create a SqlDataAdapter object
that contains the query statement. The Fill method then populates the DataSet
with the results from the query.

'Create a connection
Dim conn As SqlConnection = New SqlConnection _
 ("server=localhost;uid=sa;pwd=;database=pubs")
'Create the DataAdapter
Dim cmdAuthors As SqlDataAdapter = New SqlDataAdapter _
 ("select * from Authors", conn)
'Create and populate the DataSet
Dim ds As DataSet
ds= New DataSet()
cmdAuthors.Fill(ds, "Authors")

16 Module 3: Using Microsoft ADO.NET to Access Data

Storing Multiple Tables in a DataSet

n Add the First Table

n Add the Subsequent Table(s)

command = New SqlDataAdapter _
("select * from Authors", conn)

command.Fill(ds, "Authors")

command = New SqlDataAdapter _
("select * from Authors", conn)

command.Fill(ds, "Authors")

command.SelectCommand = New SQLCommand _
("select * from Titles", conn)

command.Fill(ds, "Titles")

command.SelectCommand = New SQLCommand _
("select * from Titles", conn)

command.Fill(ds, "Titles")

Authors

Books

DataSet

Data Tables

*****************************illegal for non-trainer use******************************

A DataSet can contain multiple tables. You can retrieve multiple tables from a
database and store them in a DataSet.

You can store tables from different databases in the same DataSet.

å To retrieve and store multiple tables in a DataSet

1. Create and populate the first DataSet.

ds = New DataSet()
SQL = "Select * from Authors"
command = New SqlDataAdapter (SQL, conn)
command.Fill(ds, "Authors")

2. Reset the SelectCommand, InsertCommand, or DeleteCommand

property of the DataAdapter object to a new Command object with a new
SQL statement.

command.SelectCommand = New SqlCommand _
 ("select * from Titles", conn)

3. Call Fill again.

command.Fill(ds, "Titles")

Note

 Module 3: Using Microsoft ADO.NET to Access Data 17

The following code shows how you can add two tables from two different
queries, one for authors and the other for titles, to the same DataSet.

Dim strConn As String
Dim conn As SqlConnection
Dim SQL As String
Dim command As SqlDataAdapter
Dim ds As DataSet

'create connection to database
strConn = "server=localhost;uid=sa;pwd=;database=pubs"
conn = New SqlConnection(strConn)

'fill DataSet with first set of data
SQL = "Select * from Authors"
command = New SqlDataAdapter (SQL, conn)
ds = New DataSet()
command.Fill(ds, "Authors")

'fill DataSet with second set of data
SQL = "select * from Titles"
command.SelectCommand = New SqlCommand(SQL, conn)
command.Fill(ds, "Titles")

18 Module 3: Using Microsoft ADO.NET to Access Data

Using DataViews

n DataViews Can be Customized to Present a Subset of
Data from a DataTable

n The DefaultView Property Returns the Default DataView
for the Table

n Setting Up a Different View of a DataSet

Dim dv as DataView
dv = New DataView (ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"

Dim dv as DataView
dv = New DataView (ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"

Dim dv as DataView
dv = ds.Tables("Authors").DefaultView
Dim dv as DataView
dv = ds.Tables("Authors").DefaultView

*****************************illegal for non-trainer use******************************

To display the data held in a DataSet, you need to use a DataView.

DataViews can be customized to present a subset of data from the DataTable.
This capability allows you to have two controls bound to the same DataTable,
but showing different versions of the data. For example, one control may be
bound to a DataView that shows all the rows in the table, and a second may be
configured to display only the rows that have been deleted from the DataTable.

Each DataTable in a DataSet has a DefaultView property, which returns the
default view for the table. You can access the default DataView on a DataSet
as follows:

Dim dv As DataView
dv = ds.Tables("Authors").DefaultView

The DataSet object contains a Tables collection. You reference the
DataTable you are interested in by name.

You can also create a view of a subset of the data in a DataTable. For example,
you can set the RowFilter property on a DataView to retrieve only authors
from California.

Dim dv as DataView
dv = New DataView (ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"

For more information on the properties of the DataView object, see the
Microsoft .NET Framework SDK documentation.

Note

 Module 3: Using Microsoft ADO.NET to Access Data 19

Displaying Data in the DataGrid Control

n Create the Control

n Bind to a DataSet

dgAuthors.DataSource=ds
dgAuthors.DataMember="Authors"
dgAuthors.DataBind()

dgAuthors.DataSource=ds
dgAuthors.DataMember="Authors"
dgAuthors.DataBind()

<asp:DataGrid id="dgAuthors" runat="server" /><asp:DataGrid id="dgAuthors" runat="server" />

*****************************illegal for non-trainer use******************************

Displaying data from a data source is extremely simple and flexible in
ASP.NET. ASP.NET includes a set of controls that perform the function of
displaying data. The developers only need to bind these controls to a data
source.

To display data on the client, you can use any list-bound control, such as
DataGrid, DataList, or DataRepeater.

Using the DataGrid Control
The DataGrid control is designed to produce Hypertext Markup Language
(HTML) output that resembles a spreadsheet.

<asp:DataGrid id="dgAuthors" runat="server" />

To bind a DataSet to a DataGrid control, you first need to set the DataSource
property of the DataGrid to a DataSet, DataTable, or DataVieweither the
DefaultView property of a DataSet or a custom DataView objectand then
call the DataBind method.

If you set the DataSource property of the DataGrid directly to a DataSet, the
DataTable with index 0 is used by default. To specify a different DataTable,
set the DataMember property of the DataGrid to the name of the DataTable.

Example Binding to a DataSet
dgAuthors.DataSource = ds
dgAuthors.DataMember = "Authors"
dgAuthors.DataBind()

20 Module 3: Using Microsoft ADO.NET to Access Data

Alternatively, you can use the Tables collection of the DataSet to assign the
DataTable directly to the DataSource of the DataGrid, as in the following
example:

dgAuthors.DataSource = ds.Tables("Authors")
dgAuthors.DataBind()

If you want to display a different view of data in the DataGrid control, create a
new DataView object from the DataSet and bind that to the control. For
example, the following code will display only those authors living in California.

Example Using a Custom View
Dim dv as DataView
dv = New DataView (ds.Tables("Authors"))
dv.RowFilter = "state = 'CA'"
dgAuthors.DataSource = dv
dgAuthors.DataBind()

The following illustration shows the default format of the DataGrid control
displaying data for authors living in California.

 Module 3: Using Microsoft ADO.NET to Access Data 21

Demonstration: Displaying Data in a DataGrid

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to read data from a database into a
DataSet and then display it in a DataGrid control.

å To run the demonstration
1. Edit the file <install folder>\DemoCode\Mod03\grid.aspx.

a. There are two DataGrid controls. The first of these sets the formatting
attributes to make the DataGrid control more aesthetically pleasing to
the viewer.

Select one of the DataGrid controls and view the Properties window in
Microsoft Visual Studio® .NET to learn about the properties of the
DataGrid control. Look specifically at the Style properties.

b. The Page_Load event procedure makes a connection to the database and
creates a DataSet.

c. The first DataGrid is bound to the DefaultView of the DataSet.

d. The second DataGrid is bound to a new DataView that is a filtered
version of the data.

2. View the page in Microsoft Internet Explorer.

22 Module 3: Using Microsoft ADO.NET to Access Data

Using Templates

FooterTemplateFooterTemplate

HeaderTemplateHeaderTemplate

SeparatorTemplateSeparatorTemplate

AlternatingItem
Template
AlternatingItem
Template

ItemTemplateItemTemplate

*****************************illegal for non-trainer use******************************

Most ASP.NET controls have a standard appearance, but the user may require
something different. ASP.NET allows users to customize the appearance of
some controls by using templates. When a control supports a template, you add
the ASP.NET template elements. Then, within the template, you insert the
elements and controls that you want to be displayed.

List-bound controls support five types of templates. The Repeater and
DataList controls can use these templates directly. The DataGrid control can
use these templates only if they are bound to a column.

Template Use

HeaderTemplate Elements to render once before any data-bound rows have

been rendered. A typical use is to begin a container
element, such as a table.

ItemTemplate Elements that are rendered once for each row in the data
source. To display data in the ItemTemplate , declare one
or more Web controls and set their data-binding
expressions to evaluate to a field in the Repeater control's
(that is, in the container control's) DataSource:
<asp:Label runat="server"
Text="<%#Container.DataItem.LstName %>"
/>

AlternatingItemTemplate Elements that are rendered for every other row in the
Repeater control.

SeparatorTemplate Elements to render between each row, typically line breaks
(
 tags), lines (<HR> tags), and so on.

FooterTemplate Elements to render once when all data-bound rows have
been rendered. A typical use is to close an element opened
in the HeaderTemplate item (with a tag such as
</TABLE>).

 Module 3: Using Microsoft ADO.NET to Access Data 23

For more information about using templates with the DataGrid control, refer to
the “DataGrid Web Control” topic in the Microsoft .NET Framework SDK
documentation.

24 Module 3: Using Microsoft ADO.NET to Access Data

Using the Repeater Control

n Create the Control and Bind to a DataView

n Display Data in Templated Elements

<asp:Repeater id="repList" runat="server">
<ItemTemplate>

<%# Container.DataItem("au_lname") %>
</ItemTemplate>
</asp:Repeater>

<asp:Repeater id="repList" runat="server">
<ItemTemplate>

<%# Container.DataItem("au_lname") %>
</ItemTemplate>
</asp:Repeater>

*****************************illegal for non-trainer use******************************

DataList and Repeater controls give a developer greater flexibility over the
rendering of list-like data. You might call these controls appearance-less,
because they have no standard appearance; that is, they have no default layout
or styles. The way data is displayed is completely determined by the HTML in
the control's templates, which describe how to present data items.

An advantage of the DataList control is that it allows you to display items in
multiple columns. As a result, elements can flow horizontally or vertically. For
more information about using templates with the DataList control, refer to the
“DataList Web Control” topic in the Microsoft .NET Framework SDK
documentation.

To use the DataList or Repeater controls, you first bind the controls to a
DataTable in a DataSet as shown in the following example code:

replist.DataSource= ds
Replist.DataMember= "Authors"
replist.DataBind()

Next, you bind data held in the Repeater control to templates that describe how
to display the data. For example, to display a list of authors’ last names, use the
following binding syntax in an ItemTemplate template:

<asp:Repeater id="repList" runat="server">
 <ItemTemplate>
 <%# Container.DataItem("au_lname") %>

 </ItemTemplate>
</asp:Repeater>

 Module 3: Using Microsoft ADO.NET to Access Data 25

The <% %> is the syntax for inline server-side code, the # is the binding
expression, the Container object refers to the current record of the Repeater
control, and the DataItem method refers to a field in the record. You are
binding to a field in the current record.

Example of a Repeater Control
The following sample code creates a very simple table to display information
about the set of authors retrieved from the database.

<asp:Repeater id="repList" runat="server">
<HeaderTemplate>
 <table>
 <tr>
 <td>Lastname</td>
 <td>Firstname</td>
 <td>State</td>
 </tr>
</HeaderTemplate>

<ItemTemplate>
 <tr>
 <td><%# Container.DataItem("au_lname") %></td>
 <td><%# Container.DataItem("au_fname") %></td>
 <td><%# Container.DataItem("state") %></td>
 </tr>
</ItemTemplate>

<FooterTemplate>
 </table>
</FooterTemplate>
</asp:Repeater>

The following illustration shows the table created by the above sample code:

26 Module 3: Using Microsoft ADO.NET to Access Data

Using the AlternatingItemTemplate with the Repeater
Control
As mentioned previously, DataList and Repeater controls can use the
templates directly. The following is an example of using the
AlternatingItemTemplate with the Repeater control. The use of
AlternatingItemTemplate highlights every alternate line.

<AlternatingItemTemplate>
 <tr>
 <td style="background-color: green">
 <%# Container.DataItem("au_lname") %></td>
 <td style="background-color: green">
 <%# Container.DataItem("au_fname") %></td>
 <td style="background-color: green">
 <%# Container.DataItem("state") %></td>
 </tr>
</AlternatingItemTemplate>

The following illustration shows the table with the AlternatingItemTemplate :

 Module 3: Using Microsoft ADO.NET to Access Data 27

Demonstration: Displaying Data in a Repeater Control

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to display data in a Repeater control.

å To run the demonstration

1. Edit the file <install folder>\DemoCode\Mod03\repeater.aspx.

a. The Page_Load event procedure makes a connection to the database,
creates a DataSet, and binds it to the two Repeater controls.

b. The first Repeater control, repList, simply outputs the data from the
DataSet in a list.

c. The second Repeater control, repTable, uses HeaderTemplate,
ItemTemplate, AlternatingItemTemplate, and FooterTemplate
templates to display data in a table.

2. View the page in Microsoft Internet Explorer.

28 Module 3: Using Microsoft ADO.NET to Access Data

u Using Stored Procedures

n Calling Stored Procedures

n Passing Parameters

n Calling Action Stored Procedures

n Demonstration: Calling Stored Procedures

*****************************illegal for non-trainer use******************************

In the past, data processing has been primarily connection-based. Now, in an
effort to make multi-tiered applications more efficient, data processing is
turning to a message-based approach that revolves around chunks of
information. In ADO.NET, this is accomplished by the DataAdapter object,
which provides a bridge to retrieve and save data between a DataSet object and
its source data store. The DataAdapter object accomplishes this by invoking
the appropriate SQL commands against the data store.

Both the SqlDataAdapter and the OleDbDataAdapter classes feature four
command objects, InsertCommand, UpdateCommand, DeleteCommand,
and SelectCommand. These objects provide the create , update, delete, and
read functions for a specific DataTable in the DataSet.

These command objects are used when you want to perform a number of
updates at the same time. Instead of having one stored procedure to do it all,
you can put SQL Statements in each object and call the Update method.

For more information about these command objects, see the .NET Framework
SDK documentation.

However, the easier and more commonly used method of updating data in a
database is to use stored procedures. You can use stored procedures to read and
modify data from a database. You can call stored procedures both from
DataAdapter and Command objects.

 Module 3: Using Microsoft ADO.NET to Access Data 29

Calling Stored Procedures

n Stored Procedures Provide Security for Database

n Set Up the DataAdapter

n Run the Stored Procedure and Store Returned Records

Dim cmd as SqlDataAdapter
cmd = New SqlDataAdapter()
cmd.SelectCommand = New SqlCommand()
With cmd.SelectCommand

.Connection = conn

.CommandText = "ProductCategoryList"

.CommandType = CommandType.StoredProcedure
End With

Dim cmd as SqlDataAdapter
cmd = New SqlDataAdapter()
cmd.SelectCommand = New SqlCommand()
With cmd.SelectCommand

.Connection = conn

.CommandText = "ProductCategoryList"

.CommandType = CommandType.StoredProcedure
End With

cmd.Fill (ds, "Categories")cmd.Fill (ds, "Categories")

*****************************illegal for non-trainer use******************************

A stored procedure is a sequence of Transact-SQL (T-SQL) statements stored
on the database server. Stored procedures provide a level of security to a
database. The database designer can create stored procedures to retrieve and
modify data, and not allow developers access to the actual tables of the database.
In this way, the database designer can then change the structure of the database
without breaking applications that use it.

Stored procedures are able to return a set of records. This will not always be the
case. Stored procedures can encapsulate repetitive tasks and execute them
efficiently. When you call a stored procedure that returns a set of records, use a
DataAdapter and the Fill method. When you call a stored procedure that
performs some function on the database but does not return a set of records, use
a Command object and the ExecuteNonQuery method.

Calling a Select Stored Procedure
Using stored procedures in ADO.NET is similar to ADO. You create a
command object and point it to the database connection. Next, you set the
CommandText property to the name of the stored procedure and the
CommandType property to CommandType.StoredProcedure.

The following is the ProductCategoryList stored procedure. It returns a list of
Categories.

Procedure ProductCategoryList
As
 SELECT CategoryID,CategoryName
 FROM Categories

30 Module 3: Using Microsoft ADO.NET to Access Data

The following example code uses a Connection object and a DataAdapter
object to call the ProductCategoryList stored procedure:

Dim cmd as SqlDataAdapter
cmd = New SqlDataAdapter()
cmd.SelectCommand = New SqlCommand()
With cmd.SelectCommand
 .Connection = conn
 .CommandText = "ProductCategoryList"
 .CommandType = CommandType.StoredProcedure
End With

You can directly set the connection and command text when creating the
SqlDataAdapter object:

cmd = New SqlDataAdapter("ProductCategoryList", conn)

You then simply need to set the CommandType property before you call the
Fill method.

To execute the stored procedure, call the Fill method of the SqlDataAdapter
object. This fills a DataTable object with the returned records of the stored
procedure.

cmd.Fill(ds, "Categories")

After you have filled a DataTa ble with the results of a Select stored procedure,
you can bind it to a list-bound control to display the data.

Note

 Module 3: Using Microsoft ADO.NET to Access Data 31

Passing Parameters

n Create Parameter, Set Direction and Value, Add to the
Parameters Collection

n Run Stored Procedure

workParam = New SqlParameter("@CategoryID", _
SQLDbType.Int)

workParam.Direction = ParameterDirection.Input
workParam.Value = CInt(txtCatID.Text)

cmd.SelectCommand.Parameters.Add(workParam)

workParam = New SqlParameter("@CategoryID", _
SQLDbType.Int)

workParam.Direction = ParameterDirection.Input
workParam.Value = CInt(txtCatID.Text)

cmd.SelectCommand.Parameters.Add(workParam)

ds = new DataSet()
cmd.Fill(ds, "Products")
ds = new DataSet()
cmd.Fill(ds, "Products")

*****************************illegal for non-trainer use******************************

When using Microsoft SQL Server, or other procedure-based databases,
parameters can be used to pass and retrieve information from the database.
Using parameters in ADO.NET works just as it does in ADO. You can pass the
string in the command or use the parameters collection.

When using parameters, the names of the parameters added to the parameters
collection of the command must match the names of the parameter markers in
the stored procedure.

Parameters
Your application can pass specific data to a stored procedure by using
parameters. The following table describes the types of parameters available to
you.

Direction Use

Input Used by your application to send specific data values to a stored

procedure.

Output Used by a stored procedure to send specific values back to the calling
application.

InputOutput Used by a stored procedure to both retrieve information sent by your
application and to send specific values back to the application.

ReturnValue Used by a stored procedure to send a return value back to the calling
application.

32 Module 3: Using Microsoft ADO.NET to Access Data

Creating a Parameter
To create a parameter for the SqlDataAdapter object, create a new
SqlParameter object with the name and data type of the parameter. Next, set
the Direction property of the new parameter to indicate how the parameter is
used by the stored procedure. If the stored procedure returns a return value,
create a parameter named returnValue . If the parameter is an input parameter,
set the Value property to specify the data that should be sent to the server.

For example, the ProductsByCategory stored procedure takes one input
parameter:

Procedure ProductsByCategory (
 @CategoryID int)
As
 SELECT ProductID, ModelName, UnitCost, ProductImage,
 Chairman
 FROM Products
 WHERE CategoryID=@CategoryID

To call the ProductsByCategory stored procedure, create an input parameter
named @CategoryID and set its value to the value of a text box.

Dim cmd as SqlDataAdapter
cmd = New SqlDataAdapter ()
cmd.SelectCommand = New SqlCommand()
With cmd.SelectCommand
 .Connection = conn
 .CommandText = "ProductCategoryList"
 .CommandType = CommandType.StoredProcedure
End With
Dim workParam as SqlParameter
workParam = New SqlParameter("@CategoryID", SqlDbType.Int)
workParam.Direction = ParameterDirection.Input
workParam.Value = CInt(txtCatID.Text)

After you have created the parameter, use the Add method of the Parameters
collection of the SelectCommand object. The Add method takes a
SqlParameter as an argument. If a stored procedure has more than one
parameter, it does not matter what order you add them in because you create
them by name.

cmd.SelectCommand.Parameters.Add(workParam)

Use the Fill method to run the stored procedure and retrieve the records.

ds = new DataSet()
cmd.Fill(ds, "Products")

 Module 3: Using Microsoft ADO.NET to Access Data 33

Calling Action Stored Procedures

n Use SQLCommand Object

n Call the ExecuteNonQuery Method

n Retrieve Output Parameters

curSales = myCmd.Parameters("@ItemCount").ValuecurSales = myCmd.Parameters("@ItemCount").Value

conn.Open()
myCmd.ExecuteNonQuery()
conn.Close()

conn.Open()
myCmd.ExecuteNonQuery()
conn.Close()

Dim myCmd As SqlCommand = New SqlCommand _
("OrdersCount", conn)

Dim myCmd As SqlCommand = New SqlCommand _
("OrdersCount", conn)

*****************************illegal for non-trainer use******************************

When calling an update, insert, or delete stored procedure, you use the
SqlCommand directly and call the ExecuteNonQuery method to run it.

The OrdersCount stored procedure takes a customer’s ID and returns the
number of outstanding orders that customer has:

Procedure OrdersCount (
 @CustomerID int,
 @ItemCount int OUTPUT)
As
 SELECT @ItemCount=COUNT(OrderID)
 FROM Orders
 WHERE CustomerID=@CustomerID

Because this stored procedure does not return a set of records, you do not need
to use a DataAdapter object. Instead, you can use a Command object directly,
and call the ExecuteNonQuery method to run the stored procedure.

34 Module 3: Using Microsoft ADO.NET to Access Data

To call this stored procedure, create an input parameter named @CustomerID,
an output parameter named @ItemCount, add them to the Parameters
collection of a Command object, and then call ExecuteNonQuery to run the
stored procedure:

Dim myCmd As SqlCommand = New SqlCommand("OrdersCount", conn)
myCmd.CommandType = CommandType.StoredProcedure

'add an input parameter
workParam = New SqlParameter("@CustomerID", SqlDbType.Int)
workParam.Direction = ParameterDirection.Input
workParam.Value = CInt(txtCustID.Text)
myCmd.Parameters.Add (workParam)

'add an output parameter
workParam = New SqlParameter("@ItemCount", SqlDbType.Int)
workParam.Direction = ParameterDirection.Output
myCmd.Parameters.Add (workParam)

'execute the stored procedure
conn.Open()
myCmd.ExecuteNonQuery()
conn.Close()

Retrieving an Output Parameter
If you need to retrieve a value from a stored procedure that returns a value or
sets an output parameter, use the Parameters collection to find the value of the
output parameter. You can reference the value of the output parameter by name
or index. The following example code retrieves the value of the @ItemCount
output parameter by name:

curSales = myCmd.Parameters("@ItemCount").Value

 Module 3: Using Microsoft ADO.NET to Access Data 35

Demonstration: Calling Stored Procedures

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to call stored procedures from DataSets,
both with and without parameters.

å To run the demonstration
1. Edit the file <install folder>/DemoCode/2063/mod03/storedprocedure.aspx

There are three sub-procedures called from the Page_Load event procedure
that call stored procedures in different ways.

a. The displayCategories procedure calls a stored procedure that has no
parameters.

b. The displayProducts procedure calls a stored procedure that has one
input parameter.

c. The displayOrderCount procedure calls a stored procedure that has
input and output parameters.

2. View the page in Internet Explorer.

The first DataGrid is filled from the displayCategories procedure.

3. Enter a category number in the text box and click Get Products.

The second DataGrid is filled from the displayProducts procedure.

4. Enter a customer number in the textbox (such as 31 or 33) and click Get
Order Count.

The element is filled from the displayOrderCount procedure.

36 Module 3: Using Microsoft ADO.NET to Access Data

5. View the source code of the page.

The Hidden field in the form contains the DataSet.

6. In Visual Studio .NET, you can view the objects in the Conf SQL Server
database.

a. Open the Server Explorer window.

b. Expand Servers , then <Computer Name>, then SQL Servers , then
<Computer Name>, then Conf.

You can view the tables and other objects in the SQL Server database.

 Module 3: Using Microsoft ADO.NET to Access Data 37

Lab 3: Using ADO.NET to Access Data

*****************************illegal for non-trainer use******************************

Objectives
After completing this lab, you will be able to:

n Connect to a database.

n Create and fill a DataSet with data from a database.

n Display data using the Repeater control.

Prerequisite
Before working on this lab, you must know how to use Web controls in an
ASP.NET page.

Lab Setup
There are starter and solution files associated with this lab. The starter files are
in the folder <install folder>\Labs\Lab03\Starter and the solution files for this
lab are in the folder <install folder>\Labs\Lab03\Solution.

Scenario
There are five tracks in the ASP.NET conference. To view these tracks, a user
goes to the ProductsList.aspx page. In Exercise 1, you will connect to the
database, create a DataSet , fill it, and display it in a Repeater control. In
Exercise 2, you will display the alternating lin e differently. In Exercise 3
(optional), you will use a DataList control to display a menu of items available
in the ASP.NET conference.

Estimated time to complete this lab: 60 minutes

38 Module 3: Using Microsoft ADO.NET to Access Data

Exercise 1
Accessing a SQL Database by Using ADO.NET

In this exercise, you connect to the Conf SQL Server database and call a stored
procedure. You then display the data in a Repeater control.

å To connect to the database
1. Open the file ProductsList.aspx in the folder InetPub\wwwRoot\ASPNET.

2. Locate the comment:

' TO DO: read data from database

3. Create a new connection to the Conf database.

a. Declare a string variable named strConn.

b. Set the variable to:
"server=localhost;uid=sa;pwd=1Aspnet;database=Conf"

c. Declare a SqlConnection variable named conn.

d. Create a new SqlConnection object from the strConn variable and save
it in the conn variable.

Your code should look like the following:

Dim strConn As String
Dim conn As SqlConnection

strConn = _
 "server=localhost;uid=sa;pwd=1Aspnet;database=Conf"
conn = New SqlConnection(strConn)

 Module 3: Using Microsoft ADO.NET to Access Data 39

å To call the ProductsByCategory stored procedure

1. Create a new SqlDataAdapter variable to call the ProductsByCategory
stored procedure.

Your code should look like the following:

Dim cmdProducts As SqlDataAdapter
cmdProducts = _
 New SqlDataAdapter("ProductsByCategory", conn)
cmdProducts.SelectCommand.CommandType = _
 CommandType.StoredProcedure

2. Create an input parameter for the stored procedure with the following
properties.

Property Value

Name @CategoryID

Type SqlDbType.Int

Value categoryID

3. Add the parameter to the Parameters collection of the SQLDataAdapter
variable.

Your code should look like the following:

Dim paramCategoryID As SqlParameter
paramCategoryID = _
 new SqlParameter("@CategoryID", SqlDbType.Int, 4)
paramCategoryID.Value = categoryID
cmdProducts.SelectCommand.Parameters.Add(paramCategoryID)

å To create and fill the DataSet
1. Create a new DataSet object.

2. Fill the DataSet by calling the Fill method of the SqlDataAdapter variable.
Save the data in a table named Products.

Your code should look like the following:

Dim dsProducts As New DataSet
cmdProducts.Fill(dsProducts, "Products")

å To display the data in a Repeater control

• At the end of the Page_Load event procedure, display the default view of
the Products table in the DataSet by binding it to the repList Repeater
control.

Your code should look like the following:

repList.DataSource = _
 dsProducts.Tables("Products").DefaultView
repList.DataBind()

40 Module 3: Using Microsoft ADO.NET to Access Data

å To save and test your work

1. Save your changes to ProductsList.aspx.

2. Using Internet Explorer , view the ProductsList.aspx page by viewing
http://localhost/ASPNET/ProductsList.aspx?CategoryID=15

The ProductsList.aspx page can display any of the categories of
information in the Conf database. CategoryID 15 will display the conference
tracks.

You should see the tracks of the conference, as shown in the following
illustration.

3. Change the CategoryID to 14 and reload the page.

You should see the Pre-Conference Tutorials of the conference, as shown in
the following illustration.

Note

 Module 3: Using Microsoft ADO.NET to Access Data 41

Exercise 2
Displaying Data Using ASP.NET Controls

In this exercise, you will modify the look of the data displayed in the Repeater
control on the ProductsList.aspx page by adding an AlternatingItemTemplate.

å To add an AlternatingItemTemplate
1. Open the file ProductsList.aspx in the folder InetPub\wwwRoot\ASPNET.

2. Copy the HTML tags for the ItemTemplate template, from
<ItemTemplate> to </ItemTemplate>.

3. Paste the copied tags following the ItemTemplate template.

4. Change the start and end tags of the new template to
AlternatingItemTemplate, as shown in the following sample code.

<AlternatingItemTemplate>
</AlternatingItemTemplate>

42 Module 3: Using Microsoft ADO.NET to Access Data

5. Set the background color of the alternating rows to BackgroundColor6,
BackgroundColor5, BackgroundColor6, BackgroundColor5.

These styles are defined in the conference.css style sheet.

To change the appearance of the columns, set the class attribute of the <td>
tags to the name of the style as follows:

<td class="BackgroundColor6">

The AlternatingItemTemplate template should look like the following:

<AlternatingItemTemplate>
 <tr>
 <td class="BackgroundColor6">
 <%# Container.DataItem("Chairman") %>
 </td>

 <td class="BackgroundColor5">
 <a href='ProductDetails.aspx?productID=
 <%# Container.DataItem("ProductID") %>'>
 <%# Container.DataItem("ModelName") %>

 </td>

 <td class="BackgroundColor6">
 Price:
 <%# System.String.Format("{0:c}", _
 Container.DataItem("UnitCost")) %>

 </td>

 <td class="BackgroundColor5">
 <a href='AddToCart.aspx?productID=
 <%# Container.DataItem("ProductID") %>'>
 Add To Cart

 </td>
 </tr>
</AlternatingItemTemplate>

 Module 3: Using Microsoft ADO.NET to Access Data 43

å To save and test your work

1. Save your changes to ProductsList.aspx.

2. Using Internet Explorer, view the ProductsList.aspx page by viewing
http://localhost/ASPNET/ProductsList.aspx?CategoryID=14

Your page should now look like the following illustration.

3. Click on a subject link.

4. Click on an Add to Cart link.

44 Module 3: Using Microsoft ADO.NET to Access Data

Exercise 3 (Optional)
Creating a Menu Page

In this exercise, you will create a menu for the Web site. The menu.aspx page
reads categories of data from the database and displays them in a DataList Web
control.

å To create a new page

1. Create a new ASP.NET page named Menu.aspx in the ASPNET Web site.

There is a Menu.aspx file in the <install folder>\Labs\Lab03\Starter
folder that you can add to your project and edit.

2. Create a DataList control named lstMenu.

<asp:DataList id="lstMenu" width="145" runat="server">

</asp:DataList>

3. Between the <asp:DataList> and </asp:DataList> tags, create an
ItemTemplate template that displays data in an asp:HyperLink control.

<ItemTemplate>
 <asp:HyperLink id="HyperLink1" CssClass="MenuUnselected"
 Text='<%# Container.DataItem("CategoryName") %>'
 NavigateUrl='<%# "productslist.aspx?CategoryID=" & _
 Container.DataItem("CategoryID") %>'
 runat="server" />
</ItemTemplate>

The Text attribute of the asp:HyperLink control displays the
CategoryName field from the DataSet bound to the DataList. The
NavigateUrl attribute of the asp:HyperLink control links to the
ProductsList.aspx page, passing the ID of the selected category.

å To fill the DataList control in the Page_Load event procedure

1. Add an Import statement to import the System.Data namespace.

2. Create a Page_Load event procedure in a <script> section.

3. Add the following code to read categories from the Conf database using a
method in the Conference component, and bind them to the lstMenu
DataList control:

Dim dvMenuItems As DataView
Dim products As New Conference.ProductsDB
dvMenuItems = products.GetProductCategories(). _
 Tables(0).DefaultView

'Bind the DataView of menu items to the list
lstMenu.DataSource = dvMenuItems
lstMenu.DataBind()

Note

 Module 3: Using Microsoft ADO.NET to Access Data 45

å To save and test your work

1. Save your changes to Menu.aspx.

2. By using Internet Explorer, go to the Menu.aspx page,
http://localhost/ASPNET/menu.aspx

The page should look like the following illustration.

3. Test each hyperlink on the Menu.aspx page.

46 Module 3: Using Microsoft ADO.NET to Access Data

u Accessing Data with DataReaders

n Creating a DataReader

n Reading Data from a DataReader

n Demonstration: Accessing Data Using DataReaders

n Using DataSets vs. DataReaders

*****************************illegal for non-trainer use******************************

The benefit of using a DataSet is that it gives you a disconnected view of the
database. For long running applications, this is often the best approach. For
Web applications, developers usually perform short and simple operations with
each request, such as displaying data. For such operations, developers do not
need to maintain a DataSet object. In such cases, you can use a DataReader.

In this section, you will learn how to read data from a data source by using
DataReaders.

 Module 3: Using Microsoft ADO.NET to Access Data 47

Creating a DataReader

n Create and Open the Database Connection

n Create the DataReader From a Command Object

n Close the Connection

Dim cmdAuthors As SqlCommand = New SqlCommand _
("select * from Authors", conn)

Dim dr As SqlDataReader
dr = cmdAuthors.ExecuteReader()

Dim cmdAuthors As SqlCommand = New SqlCommand _
("select * from Authors", conn)

Dim dr As SqlDataReader
dr = cmdAuthors.ExecuteReader()

Dim conn As SqlConnection = New SqlConnection _
("server=localhost;uid=sa;pwd=;database=pubs")

conn.Open()

Dim conn As SqlConnection = New SqlConnection _
("server=localhost;uid=sa;pwd=;database=pubs")

conn.Open()

*****************************illegal for non-trainer use******************************

When a large amount of data is being retrieved, holding memory open becomes
an issue. For example, reading 10,000 rows out of a database causes a
DataTable to allocate and maintain memory for those 10,000 rows for the
lifetime of the table. If 1,000 users do this against the same machine at the same
time, memory usage becomes critical.

To address such situations, the DataReader is designed to produce a read-only,
forward-only stream returned from the database. Only one record at a time is
ever in memory. There are two DataReader objects, the SqlDataReader and
the OleDbDataReader.

A DataReader keeps the connection open until the DataReader is closed.

To use a SqlDataReader, declare a SqlCommand instead of a
SqlDataAdapter. The SqlCommand exposes an ExecuteReader method that
takes a SqlDataReader as a parameter. Note that you must explicitly open and
close the SqlConnection when you use a SQLCommand.

Dim conn As SqlConnection = New SqlConnection _
 ("server=localhost;uid=sa;pwd=;database=pubs")
conn.Open()

Dim cmdAuthors As SqlCommand = New SqlCommand _
 ("select * from Authors", conn)
Dim dr As SqlDataReader
dr = cmdAuthors.ExecuteReader()
...
dr.close()
conn.Close()

48 Module 3: Using Microsoft ADO.NET to Access Data

Error Handling with a DataReader
When using connections with the DataReader object, you should always use a
Finally blocking technique to ensure that, if anything fails, connections will be
closed.

Try
 conn.Open()
 dr = cmdAuthors.ExecuteReader()
 'use the returned data in the datareader
Catch e As Exception
 Console.WriteLine(e.ToString)
Finally
 dr.Close()
 conn.Close()
End Try

 Module 3: Using Microsoft ADO.NET to Access Data 49

Reading Data from a DataReader

n Call Read for Each Record

l Returns false when there are no more records

n Call Get for Each Field

l Parameter is the ordinal position of the field

n Call Close to Free Up the Connection

myReader.Read()
lblName.Text = myReader.GetString(1) + ", " + _

myReader.GetString(2)
myReader.Close()

myReader.Read()
lblName.Text = myReader.GetString(1) + ", " + _

myReader.GetString(2)
myReader.Close()

*****************************illegal for non-trainer use**************************** **

After you have called the ExecuteReader method of the Command object, you
access a record in the DataReader by calling the Read method. The default
positioning in the DataReader is before the first record, therefore you must call
Read before accessing any data. When no more records are available, the Read
method returns a null value.

Reading Fields from the Current Record
To get the data from fields in the current record, call an appropriate Get method,
for example, GetDateTime, GetDouble, GetInt32, or GetString. The
parameter of the Get method is the ordinal value of the field that you want to
read.

For example, the following sample code reads the first name and last name
fields, both string values, from the first record of the DataReader, by using the
GetString() method:

myReader.Read()
lblName.Text = myReader.GetString(1) + ", " + _
 myReader.GetString(2)

You can also reference the fields of data in the current record of the data reader
by name, and then call an appropriate conversion function, as shown in the
following example code:

myReader("au_fname").ToString()

50 Module 3: Using Microsoft ADO.NET to Access Data

Looping Through All Records
To loop through all the records in a DataReader, you can use a While loop, as
shown in the following sample code:

While myReader.Read()
 'do something with the data
End While

Closing the DataReader
While the DataReader is in use, the associated connection is busy serving the
DataReader. Therefore, you must call Close to close the DataReader when
you are finished using it.

myReader.Close()

 Module 3: Using Microsoft ADO.NET to Access Data 51

Demonstration: Accessing Data Using DataReaders

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to read data from a database by using a
SQLDataReader.

å To run the demonstration
1. Edit the file <install folder>\DemoCode\Mod03\Datareader.aspx

a. The Page_Load event procedure sets up the DataReader and outputs
the first record.

b. The Page_Unload event procedure closes the connection.

2. View the page in Internet Explorer.

3. Edit the file <install folder>\Democode\Mod03\datareadersp.aspx

This page fills a DataReader from a stored procedure and then displays the
results.

4. View the page in Internet Explorer.

52 Module 3: Using Microsoft ADO.NET to Access Data

Using DataSets vs. DataReaders

DataSet

1. Create a database
connection

2. Store query in DataAdapter

3. Populate DataSet with Fill
method

4. Create DataView

5. Bind DataView to list-bound
control

DataReader

1. Create a database connection

2. Open the database connection

3. Store query in SqlCommand

4. Populate DataReader with
ExecuteReader method

5. Call Read for each record, and
Get for each field

6. Manually display data

7. Close the DataReader and the
connection

*****************************illegal for non-trainer use******************************

The general procedure for accessing databases from ASP.NET is different
depending on whether you will be using a DataSet or a DataReader:

Using DataSets Using DataReaders

1. Connect to the database by using
 SqlConnection or OleDbConnection.

1. Connect to the database by using
 SqlConnection or OleDbConnection.

2. Store the database query in
 SqlDataAdapter or
 OleDbDataAdapter objects.

2. Open the connection with the Open
 method.

3. Populate a DataSet from the
 DataAdapter by using Fill.

3. Store database query in SqlCommand
 or OleDbCommand objects.

4. Set up a new DataView for the
 desired table.

4. Populate a DataReader from the
 Command by using ExecuteReader
 method.

5. Bind a server control, such as the
 DataGrid, to the DataView.

5. Call Read and Get methods of the
 DataReader to read data.

 6. Close the DataReader.

 7. Close the connection.

 Module 3: Using Microsoft ADO.NET to Access Data 53

u Binding to XML Data

n Overview of XML

n Reading XML Data into a DataSet

n Demonstration: Reading XML Data into a DataSet

*****************************illegal for non-trainer use******************************

HTML is widely used for presenting information on the Web. HTML works
well as a presentation language, but it is not suitable for representing data. For
example, you can easily format data in an HTML table, but you cannot describe
the individual components of the information. To share information between
applications, you must have a language that can describe data in a standardized
way so that any application, present or future, can understand and use this data
correctly. XML is one such standardized language. XML not only helps you
structure your data but acts as a common language between different business
applications.

In this section, you will get an overview of XML. You will also learn how to
read and display XML data by using ADO.NET.

54 Module 3: Using Microsoft ADO.NET to Access Data

Overview of XML

n Machine-Readable and Human-Readable Data

n Defines the Data Content and Structure

n Separates Structure from Presentation

n Allows You to Define Your Own Tags and Attributes

<employee>
<name>Jake</name>
<salary>25000</salary>
<region>Ohio</region>

</employee>

<employee>
<name>Jake</name>
<salary>25000</salary>
<region>Ohio</region>

</employee>

*****************************illegal for non-trainer use******************************

Businesses today face many problems when it comes to organizing data. They
need to meet the following requirements:

n Data needs to be readable by both computers and users.

n Both the content and the structure of the data need to be defined.

n The structure of the data needs to be separate from the presentation of the
data.

n The structure needs to be open and extensible.

XML fulfills all these requirements.

XML defines the structure of data in an open and self-describing manner. This
allows data to be easily transferred over a network and consistently processed
by the receiver. XML describes how data is structured, not how it should be
displayed or used. XML documents contain tags that assign meaning to the
content of the document. These tags allow programmers to find the data they
need in the XML document.

For example, the following XML sample contains information about an
employee but does not specify how to display this information:

<employee>
 <name>Jake</name>
 <salary>25000</salary>
 <region>Ohio</region>
</employee>

 Module 3: Using Microsoft ADO.NET to Access Data 55

XML is considered a markup language because it allows you to define data
structure by using markup tags. You can define your own tags that describe the
data in whatever way you find useful.

XML data is held in a simple, open format that is easily parsed by other
applications. The fact that XML documents contain text rather than binary data
is another key advantage. Applications can parse an XML document, looking
for specific tags of interest to those applications. Unknown tags and their
associated data can be freely ignored.

56 Module 3: Using Microsoft ADO.NET to Access Data

Reading XML Data into a DataSet

n Read the XML File

n Read the Contents of the File Stream

n Read Data from the StreamReader into a DataSet

fs = New FileStream _
(Server.MapPath("schemadata.xml"), _
FileMode.Open, FileAccess.Read)

fs = New FileStream _
(Server.MapPath("schemadata.xml"), _
FileMode.Open, FileAccess.Read)

Reader = New StreamReader(fs) Reader = New StreamReader(fs)

ds.ReadXml(Reader) ds.ReadXml(Reader)

*****************************illegal for non-trainer use******************************

DataSets in ADO.NET are designed to extract data in a way that is independent
of its data source. Therefore, reading data from an XML source is similar to
reading data from a database. To read XML data, you need to import the
System.IO namespace in your ASP.NET page.

You can’t read XML data into a DataReader. You can read it only into a
DataSet.

For XML data, the DataSet supports a ReadXml method that takes a
FileStream as its parameter. The DataSet expects data to be in the following
format:

<DocumentElement>
 <TableName>
 <ColumnName1>column value</ColumnName1>
 <ColumnName2>column value</ColumnName2>
 <ColumnName3>column value</ColumnName3>
 </TableName>
 <TableName>
 <ColumnName1>column value</ColumnName1>
 <ColumnName2>column value</ColumnName2>
 <ColumnName3>column value</ColumnName3>
 </TableName>
</DocumentElement>

Each TableName section corresponds to a single row in the table.

Note

 Module 3: Using Microsoft ADO.NET to Access Data 57

The following example shows how to read the schema and data from an XML
file by using the ReadXml method, the FileStream object, and the
StreamReader object. Note that after the data is read into the DataSet, it is
indistinguishable from SQL data— the DataGrid binds to it in the same way.

å To read XML data and display it in a DataGrid
1. First, open the XML file:

Dim fs As FileStream
fs = New FileStream _
 (Server.MapPath("schemadata.xml"), _
 FileMode.Open,FileAccess.Read)

2. Next, attach a StreamReader to the FileStream.

Dim Reader As StreamReader
Reader = New StreamReader(fs)

3. Finally, read the XML data from the StreamReader into the DataSet.

Dim ds As New DataSet
ds.ReadXml(Reader)

After the data has been read into a DataSet, the repeated elements in the XML
become the columns in the DataSet and can be bound to any control to be
displayed on the client.

The full sample code is as follows:

Dim ds As New DataSet
Dim fs As FileStream
Dim Reader As StreamReader

'Read the XML data into a DataSet
fs = New FileStream _
 (Server.MapPath("schemadata.xml"), _
 FileMode.Open,FileAccess.Read)
Reader = New StreamReader(fs)
ds.ReadXml(Reader)
fs.Close()

'Bind the DataSet to a DataGrid
Dim Source As DataView
Source = new DataView(ds.Tables(0))
MyDataGrid.DataSource = Source
MyDataGrid.DataBind()

58 Module 3: Using Microsoft ADO.NET to Access Data

Demonstration: Reading XML Data into a DataSet

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to read information from an XML file
and display it in a DataGrid control.

å To run the demonstration
1. Open the file <install folder>\DemoCode\Mod03\Books1.xml.

This is the data that will be displayed from the ASPX page.

2. Edit the file <install folder>\DemoCode\Mod03\xml.aspx.

a. There is a DataGrid control that uses templates to change the look of
the table.

b. The Page_Load event procedure reads the data from the Books1.xml
file into a DataSet and binds it to the DataGrid.

3. View the page in Internet Explorer.

4. Edit the file <install folder>\Democode\Mod03\aspXMLControl.aspx.

This page uses the XML Web control to read data from the Books1.xml file,
and apply the Books1.xsl style sheet.

5. View the page in Internet Explorer.

 Module 3: Using Microsoft ADO.NET to Access Data 59

Review

n Overview of ADO.NET

n Connecting to a Data Source

n Accessing Data with DataSets

n Using Stored Procedures

n Accessing Data with DataReaders

n Binding to XML Data

*****************************illegal for non-trainer use******************************

1. What are some of the new objects in the ADO.NET object model?

2. What is the difference between a DataSet and a DataView?

3. What is the difference between a DataSet and a DataReader?

60 Module 3: Using Microsoft ADO.NET to Access Data

4. What is the purpose of the DataAdapter object?

5. Which method is used to populate a DataSet with results of a query?

