

Contents

Overview 1

Advantages of Partitioning an ASP.NET
Page 2

Creating and Using Code-Behind Pages 3

Creating and Using User Controls 12

Creating and Using Components 19

Lab 4: Separating Code from Content 27

Review 39

Module 4: Separating
Code from Content

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, FrontPage, IntelliSense, Jscript, Outlook,
PowerPoint, Visual Basic, Visual InterDev, Visual C++, Visual C#, Visual Studio, and Windows
Media are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 4: Separating Code from Content 1

Overview

n Advantages of Partitioning an ASP.NET Page

n Creating and Using Code-Behind Pages

n Creating and Using User Controls

n Creating and Using Components

*****************************illegal for non-trainer use******************************

Active Server Pages (ASP) applications contain a mix of Hypertext Markup
Language (HTML) and script, making the code difficult to read, debug, and
maintain. Microsoft® ASP.NET eliminates this problem by promoting the
separation of code and content. That is, in ASP.NET, the user interface and the
user interface programming logic need not necessarily be written in a single
page.

There are three ways in which you can separate code and content in ASP.NET:

n By using code-behind files that are pre-compiled modules written in any of
the Microsoft .NET run-time-compliant languages.

n By creating user controlsfrequently used control sets and their logic and
using them as you would use controls in your ASP.NET pages.

n By moving business logic into components that can run on the server and
calling those components from server-side code.

After completing this module, you will be able to:

n Explain the need for code-behind pages.

n Create a code-behind page and use it with an ASP.NET page.

n Explain the advantages of user controls.

n Explain how user controls work.

n Create a component in Microsoft Visual Basic®.

n Use a component in an ASP.NET page.

2 Module 4: Separating Code from Content

Advantages of Partitioning an ASP.NET Page

n Individual Members of the Development Team Can Work
on Separate, Individually-Owned Parts

n Developers Can Work Within Environments That Are
Familiar

n Web Authors Can Use HTML Development Tools to
Build the Interface

*****************************illegal for non-trainer use******************************

Partitioning ASP.NET pages into code and content has several advantages.
Partitioning eliminates confusing pages where code and HTML are intertwined,
producing pages that are easier to maintain and understand. In addition:

n Members of the development team can work on their own parts without
disturbing the work of others. For example, the interface designer can work
on the interface files at the same time that the programmer works on the
source code files.

n Partitioning code and content allows developers to use environments that
are familiar to them. For example, you can use separate editors to develop
the code.

n Web authors can use other HTML development tools to build the visible
interface part of an application.

 Module 4: Separating Code from Content 3

u Creating and Using Code-Behind Pages

n Understanding How Code-Behind Pages Work

n Creating a Class File in Visual Basic

n Demonstration: Creating a Code-Behind Page

n Accessing Controls in a Code-Behind Page

*****************************illegal for non-trainer use******************************

User interface logic for a Web form relies on code that you create to interact
with the form. You can design your application so that the code resides in a
separate file known as the code-behind page, that is written in Visual Basic or
Microsoft Visual C#™ . When you run the Web form, the code-behind class file
runs and dynamically produces the output for your page.

In this section, you will learn how code-behind pages work. You will also learn
how to create a code-behind class file in Visual Basic.

4 Module 4: Separating Code from Content

Understanding How Code-Behind Pages Work

n Use Page Directive to Link
the Two Files

n Call Procedures in the Code-
Behind Page

n Create Separate Files for User
Interface and Interface Logic

<%@ Page Inherits="myDemo"
Src="demo.vb"%>

<%@ Page Inherits="myDemo"
Src="demo.vb"%>

ds = getData()ds = getData()

Public Class myDemo
Public Function getData()

…

End Function
End Class

Public Class myDemo
Public Function getData()

…

End Function
End Class

demo.vb

<%@ Page
Inherits="myDemo"
Src= "demo.vb" %>

Page.aspx

*****************************illegal for non-trainer use******************************

Creating code-behind pages is relatively simple. It involves creating two
separate files, one for the user interface and the other for the user interface logic.
The interconnectivity between these two files is provided through the @Page
directive, which is used to specify optional settings at the page level.

Creating a User Interface File
First, you create the HTML for the interface. The interface file is an ASP.NET
page (that uses the .aspx extension). The first line of the interface ASP.NET
page is an @Page directive that specifies the name of the code-behind file and
the actual class name inside the code-behind file that will be used.

In the following example, the ASP.NET page is linked to the demo.vb class file.
The Inherits attribute specifies the class file to be used and the Src attribute
indicates the path to the class file itself.

<%@ Page Language="vb" Inherits="myDemo" Src="demo.vb" %>

Specifying the path to the class file is optional. If the path is omitted,
ASP.NET looks for the class file in the /bin directory of the application.

Creating a Code-Behind File
Next, you create a separate class file, in any of the supported languages, that
provides the functionality required for the user interface page. A code-behind
class file is identical to any other class file that you create in a particular
language.

In Visual Basic, the class file has a .vb extension. In Visual C#, the code-behind
page has a .cs extension. This ensures that the code-behind file is passed to the
correct compiler when the page is first executed.

Note

 Module 4: Separating Code from Content 5

Using Code-Behind Procedures
To call a function or sub-procedure in a code-behind page, preface the name of
the procedure with the name of the code-behind page. For example, in the class
myDemo, in the code-behind page demo.vb, a function named getData returns
a DataSet object. The following sample code calls the getData function and
then displays the returned DataSet (ds) in the DataGrid control (dgAuthors).

Public Sub Page_Load (Src As Object, E As EventArgs)
 Dim ds As DataSet
 ds = getData()

 dgAuthors.DataSource=ds
 dgAuthors.DataMember="Authors"
 dgAuthors.DataBind()
End Sub

6 Module 4: Separating Code from Content

Creating a Class File in Visual Basic

n Class File

n Using Objects from the ASP.NET Environment

n Inheriting from the ASP.NET Page Class

Public Class myDemo
Public Function getData() As DataSet
…
End Function

End Class

Public Class myDemo
Public Function getData() As DataSet
…
End Function

End Class

Imports System
Imports System.Web
Imports System
Imports System.Web

Public Class myDemo
Inherits System.Web.UI.Page
…
End Class

Public Class myDemo
Inherits System.Web.UI.Page
…
End Class

*****************************illegal for non-trainer use********************** ********

A code-behind class file is identical to any other class file that you might create
in your chosen programming language. The basic structure of a Visual Basic
class file looks like the following:

Public Class class_name
 Public variable_name As variable_type
 Public Function function_name(parameters) As return_type
 …
 End Function
 Public Sub sub_name(parameters)
 …
 End Sub
End Class

Notice that, in the above class declaration, the functions, sub-procedures,
and the class are all public. Public procedures are used to invoke code-behind
pages from the user interface page.

Note

 Module 4: Separating Code from Content 7

To convert the preceding class file structure into a code-behind class file, you
need to perform two steps:

1. Use the objects from the ASP.NET environment.

You need to import the objects from the ASP.NET environment that you
need to use in a class file. By default, all objects in an ASPX page import
the objects from the ASP.NET environment. However, this is not true for a
class file. Therefore, a class file, at the minimum, needs to import the
System and Web libraries from the ASP.NET environment. This is done as
follows:

Imports System
Imports System.Web

2. Inherit from the ASP.NET Page class.

Your class must inherit from the ASP.NET Page class so that it can be
integrated into the ASP.NET page in which it is used. This is done with the
Inherits statement.

Public Class class_name
Inherits System.Web.UI.Page
…
End Class

The following is a code-behind page with one class named myDemo, and one
public function named getData. The function reads data from a database and
returns it to the user interface page as a DataSet object.

Imports System
Imports System.Web
Imports System.Data
Imports System.Data.SqlClient

Public Class myDemo
Inherits System.Web.UI.Page

Public Function getData() As DataSet
 Dim ds As DataSet
 Dim conn As SqlConnection
 Dim cmdAuthors As SqlDataAdapter

 conn = New SqlConnection _
 ("server=localhost;uid=sa;pwd=;database=pubs")
 cmdAuthors = New SqlDataAdapter _
 ("select * from Authors", conn)

 ds = new DataSet()
 cmdAuthors.Fill(ds, "Authors")

 return (ds)
End Function
End Class

8 Module 4: Separating Code from Content

Demonstration: Creating a Code-Behind Page

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to create a code-behind page and use it
from an ASP.NET page.

å To run the demonstration

1. Edit the page <install folder>\Democode\Mod04\beforeCodeBehind.aspx
using Notepad.

This page has both code and content.

2. Open the files codeBehindDemo.vb and codeBehind.aspx in the folder
<install folder>\Democode\Mod04.

The file codebehind.aspx cannot be opened in Visual
Studio .NET. You must use Notepad or another text editor.

These files perform the same function as the beforeCodeBehind.aspx page,
but use a code-behind page.

3. View the page codeBehind.aspx in Microsoft Internet Explorer.

Important

 Module 4: Separating Code from Content 9

å To demonstrate using code-behind pages in Microsoft
Visual Studio® .NET

Visual Studio .NET uses code-behind pages by default.

1. Add a new Web form to a Visual Studio .NET project.

2. Add a label Web control and a button Web control from the toolbox to the
page.

3. View the HTML for the page and notice the attributes of the @Page
directive.

4. Return to Design view and double-click the button Web control.

This opens the code-behind page, and creates a click event procedure for the
button.

Public Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
End Sub

5. Add code to change the Text property of the label control.

Label1.Text = "clicked"

6. Build the project.

In Visual Studio .NET, the code-behind pages are compiled into an
assembly. You need to build the project before they will be accessible.

7. View the page in Internet Explorer.

10 Module 4: Separating Code from Content

Accessing Controls in a Code-Behind Page

n Import Namespaces for Controls

n Declare Variables with Same Name as Controls

n Reference Properties of Controls

Imports System.Web.UI.WebControls
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls
Imports System.Web.UI.HtmlControls

Dim lbl As Label
Dim txt As TextBox
Dim lbl As Label
Dim txt As TextBox

Public Sub btn_Click (s as Object, e As EventArgs)
lbl.Text = "You are searching for " & txt.Text

End Function

Public Sub btn_Click (s as Object, e As EventArgs)
lbl.Text = "You are searching for " & txt.Text

End Function

*****************************illegal for non-trainer use******************************

You can create event procedures for the controls on a form in a code-behind
page. In this way, you can transfer most of the code from the user interface
page to a code-behind page.

To do this, you need to import the namespace for the controls you are using,
either System.Web.UI.WebControls or System.Web.UI.HtmlControls. You
then need to declare public variables for the controls on the ASPX page.

For example, the following is a form on the ASPX page with three controls:

<form runat=server>
 <asp:textbox id="txt" runat="server" />
 <asp:button id="btn" onclick="btn_click"
 text="Click Me" runat="server"/>
 <P><asp:label id="lbl" runat="server"/>
</form>

 Module 4: Separating Code from Content 11

The code-behind page can include the event procedure and reference the
controls on the page, as shown in the following example:

Imports System
Imports System.Web
Imports System.Web.UI.WebControls

Public Class myDemo
Inherits System.Web.UI.Page

 Public lbl As Label
 Public txt As TextBox

 Public Sub btn_click(s As Object, e As EventArgs)
 lbl.Text = txt.Text
 End sub
End Class

12 Module 4: Separating Code from Content

u Creating and Using User Controls

n Creating a User Control

n Using a User Control in an ASP.NET Page

n Demonstration: Creating a User Control

*****************************illegal for non-trainer use******************************

A user control is an ASP.NET page that is imported as a server control by
another ASP.NET page. User controls provide an easy way to partition and
reuse simple and common user interface (UI) functionality across a Web
application. User controls are not pre-compiled. However, because all
ASP.NET pages are compiled as soon as they are requested, user controls are
compiled on demand and cached in server memory.

User controls have many advantages:

n User controls are self-contained. They provide separate variable namespaces,
which means that none of the methods and variables of the user control
conflict with any existing methods and variables of the hosting page.

n User controls can be used more than once within a hosting page without
causing variable and method conflicts.

n User controls can be written in a different language from the main hosting
page.

The main difference between code-behind pages and user controls is that code-
behind pages mainly involve inheriting code classes into a page and user
controls also allow you to generate parts of the user interface.

 Module 4: Separating Code from Content 13

Creating a User Control

n User-Defined Server Control with an .ascx Extension

l <%@ Control Language="vb" %>

l Contains HTML but not <HTML>, <BODY>, or <FORM>

l Contains code to handle its own events

n Public Properties and Methods are Promoted to
Properties and Methods of the Control in the Host Page

Public Property pNum As Integer
Get

Return CInt(txtNum.Text)
End Get

End Property

Public Property pNum As Integer
Get

Return CInt(txtNum.Text)
End Get

End Property

*****************************illegal for non-trainer use******************************

User controls are ASP.NET pages used as server controls. User controls have
an .ascx extension. This file extension ensures that the user control’s page
cannot be executed as a stand-alone ASP.NET page. User controls largely
replace include files. They are used to address the same problems that were
solved by using include files, such as dealing with headers, navigation bar,
repeating blocks of code, and so on.

A user control consists of HTML and code, but because user controls are
included in existing pages, they do not contain <head>, <body>, or <form> tags.
Those tags are included in the host ASP.NET page. User controls participate in
the complete execution life cycle of every request and can handle their own
events, encapsulating some of the page logic from the containing ASP.NET
page. For example, a user control can handle its own postback in its
Page_Load event procedure.

14 Module 4: Separating Code from Content

The following code is the HTML part of a user control that combines a text box
and two input validation controls:

<%@ Control Language="vb" %>

<asp:textbox id="txtNum" runat="server" />
<asp:RequiredFieldValidator id="txtNumValidator"
 runat="server"
 controlToValidate="txtNum"
 errorMessage="You must enter a value"
 display="dynamic">
</asp:RequiredFieldValidator>
<asp:RangeValidator id="txtNumRngValidator" runat="server"
 controlToValidate="txtNum"
 errorMessage="Please enter a number between 0 and 99"
 type="Integer"
 minimumValue="0"
 maximumValue="99"
 display="dynamic">
</asp:RangeValidator>

To expose values of controls to the containing page, create public properties.
For example, the following code creates a property named pNum that is the
Text property of the text box control in the user control:

<SCRIPT language="VB" runat="Server">
Public Property pNum As Integer
 Get
 Return CInt(txtNum.Text)
 End Get
 Set
 txtNum.Text = Value.ToString()
 End Set
End Property
</SCRIPT>

All public variables, properties, and methods of a user control are promoted to
properties (that is, tag attributes) and methods of the control in the containing
page.

 Module 4: Separating Code from Content 15

@Control directive
You can also have code-behind pages for user controls. The @Control
directive is used to reference a user control from a code-behind page. It also
defines user-control-specific attributes used by the ASP.NET page parser and
compiler. This directive can only be used with user controls.

<%@ Control attribute=value [attribute=value …]%>

For example, to reference a code-behind page for a user control, you use the
following line of code:

<%@ Control Inherits="myDemo" src="demo.vb"%>

The @Control directive supports the same attributes as the @Page
directive, except the AspCompat and Trace attributes. To enable tracing, you
must add the Trace attribute to an @Page directive in the ASPX page that
contains the user control. You can only include one @Control directive
per .ascx file.

Note

16 Module 4: Separating Code from Content

Using a User Control in an ASP.NET Page

n Include User Controls in Another ASP.NET Page Using
the Register Directive

n Insert the User Control Like a Server Control

n Set Properties of the User Control

<%@ Register TagPrefix="conference"
TagName="validNum" Src="numberBox.ascx" %>
<%@ Register TagPrefix="conference"
TagName="validNum" Src="numberBox.ascx" %>

<conference:validNum id="num1"
runat="server"/>

<conference:validNum id="num1"
runat="server"/>

num1.pNum = 5 num1.pNum = 5

*****************************illegal for non-trainer use******************************

User controls are included in an ASP.NET page by using the @Register
directive:

<%@ Register TagPrefix="conference" TagName="validnum"
 Src="numberbox.ascx" %>

The TagPrefix attribute determines a unique namespace for the user control so
that multiple user controls with the same name can be differentiated from each
other. The TagName attribute is the unique name for the user control. The Src
attribute is the virtual path to the user control file. After registering the user
control with the @Register directive, you can place the user control tag in the
ASP.NET page just as you would an ordinary server control (including the
runat="server" attribute).

<conference:validNum id="num1" runat="server"/>
<conference:validNum id="num2" runat="server"/>

When the main ASP.NET page is loaded, the run-time framework compiles the
user control file and makes it available to the page.

After the user control is available to the page, you can access its properties as
follows:

lblSum.Text = (num1.pNum + num2.pNum).ToString()

 Module 4: Separating Code from Content 17

Demonstration: Creating a User Control

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to create and use a user control.

The files numberbox.ascx and add.aspx in the folder
<install folder>\Democode\Mod04 contain the completed code for this
demonstration.

å To run the demonstration

1. Open the page <install folder>\Democode\Mod04\beforeuser.aspx.

This page has all controls and logic in one file.

2. Open the page numberbox.ascx in the folder
<install folder>\Democode\Mod04.

Numberbox.ascx is a user control that performs the same function as each
text box on the page beforeuser.asps.

3. Add the @Register directive to the beforeuser.aspx page to use the
numberbox.ascx user control.

<%@ Register TagPrefix="demos" TagName="validNum"
Src="numberbox.ascx" %>

4. Delete the four input validation controls from the beforeuser.aspx page.

5. Change the two text box controls to be <demos:validNum> controls. Use
the same ID values.

Num1: <demos:validNum id="txtNum1" runat="server" />
Num2: <demos:validNum id="txtNum2" runat="server" />

18 Module 4: Separating Code from Content

6. Change the Submit event procedure to read values from the user controls.

Sub submit(s As Object, e As EventArgs)
 If Page.IsValid Then
 lblSum.Text = _
 CStr(Convert.ToInt32(txtNum1.pNum) + _
 Convert.ToInt32(txtNum2.pNum))
 End If
End Sub

7. View the beforeuser.aspx page in Internet Explorer.

8. View the HTML source in Internet Explorer.

 Module 4: Separating Code from Content 19

u Creating and Using Components

n Deploying Components

n Creating Components

n Using Components in an ASP.NET Page

n Demonstration: Creating and Using a Component

*****************************illegal for non-trainer use******************************

In ASP.NET, business objects are the building blocks for multi-tiered Web
applications, such as those with a layer for data access or common application
rules. In this section, you will learn how to write some simple components and
include them in your ASP.NET pages.

The classic use for an external component is in a two-tier scenario to perform
data access. This simplifies the code in your page, improving readability and
separating your UI logic from the back-end functionality.

The three-tiered application model extends the two-tiered scenario to include
business rules between the UI and data access logic. The three-tiered model
allows UI developers to work with a higher level of abstraction rather than
directly manipulating data through low-level data access component application
programming interfaces (APIs). The middle business component typically
enforces business rules and ensures that the relationships and primary key
restraints of the database are enforced.

20 Module 4: Separating Code from Content

Deploying Components

n No Registration Required

l Components may be deployed by simply copying to the /bin dir or
performing an FTP file transfer

n No Server Restart Required

l The Web server does not require a restart when you change your
application

l New requests immediately begin execution against the changed file

n No Namespace Conflicts

l Each assembly loaded from /bin is limited in scope to the application
in which it is running

*****************************illegal for non -trainer use******************************

A problem with using the classic Component Object Model (COM) model for
Web application components is that the components must be registered on the
server before they can be used from a traditional ASP application. Remote
administration of these components is often not possible, because the
registration utility must be run locally on the server. In addition, these
components remain locked on disk after they are loaded by an application and
the entire Web server must be stopped before these components can be replaced
or removed.

ASP.NET solves these problems by allowing components to be placed in a
well-known directory that is automatically found at run time. This directory is
named /bin, and is located immediately under the root directory for the
application.

Following are the advantages of storing components in the /bin directory:

n No registration required

No registration is required to make components available to the ASP.NET
application. Components may be deployed by simply copying a file to the
/bin directory or performing a File Transfer Protocol (FTP) file transfer.

n No server restart required

When the component is changed by replacing a .dll in the /bin directory,
new requests by ASP.NET applications immediately begin execution
against the changed file(s). ASP.NET allows currently executing requests to
complete before the old application is replaced with the updated
component(s). The Web server does not require a restart when you change
components.

n No namespace conflicts

Each component loaded from /bin is limited in scope to the application in
which it is running. This means that many applications could potentially use
different components with the same class or namespace names, without
conflict.

 Module 4: Separating Code from Content 21

Creating Components

n A Component Is Basically a Class

n Creating a Component

n Compiling the Class

Imports System.Data.SQL
Namespace myComponent

Public Class ConferenceDB
Public Function getCategories(...)
…

End Class
End Namespace

Imports System.Data.SQL
Namespace myComponent

Public Class ConferenceDB
Public Function getCategories(...)
…

End Class
End Namespace

vbc /t:library /out:component.dll component.vbvbc /t:library /out:component.dll component.vb

*****************************illegal for non-trainer use******************************

A component at its most basic level is simply a class. The component can be
instantiated from an ASP.NET page that imports the component.

Code-Behind vs. Components
A code-behind page is an uncompiled class file. It does not define a namespace
that can be used by many applications. Instead, it defines a class that the .aspx
page inherits from. Therefore, the .aspx page can immediately call methods and
use properties of the code-behind page; you do not need to instantiate an object.
An .aspx page uses a code-behind page by adding the following to the @Page
directive:

Code-Behind Example
<%@ Page Language="vb" Inherits="myDemo" Src="demo.vb" %>

A component is always compiled into a dynamic-link library (DLL). Any page
can access the DLL. You need to instantiate an object of the class before calling
its methods. An ASPX page uses a component by adding the following code:

Component Example
<%@ Import Namespace="myComponent" %>

22 Module 4: Separating Code from Content

Creating a Component
A component class file includes a namespace declaration and class declarations.

Namespace myComponent
 Public Class ConferenceDB
 . . .
 End Class
End Namespace

Namespaces are used as an organizational system. They provide a way to
present program components that are exposed to other programs and
applications. Namespaces are always Public; however, the classes within the
namespace may have Public, Friend, or Private access.

Just as you would with code-behind pages, you need to import any libraries that
you use in the page.

Imports System.Data
Imports System.Data.SqlClient

The following code is an example of a simple class called the ConferenceDB
class. This class has a function that retrieves a list of categories from the
database.

Imports System.Data
Imports System.Data.SqlClient

Namespace myComponent
Public Class ConferenceDB

 Public Function getCategories _
 (conn As SqlConnection) As DataSet
 'Retrieve a list of categories from the database
 End Function

End Class
End Namespace

Example

 Module 4: Separating Code from Content 23

Compiling the Component
To compile this class, you can either click Build on the Build menu in Visual
Studio .NET or run the compiler from the MS -DOS® command prompt. The /t
option tells the compiler that you want to build a library (.dll), and the /out
option tells the compiler where to place the resulting assembly. An assembly is
a collection of resources that are built to work together to deliver a cohesive set
of functionality. An assembly carries all the rules necessary to ensure cohesion
of functionalities. It is the unit of access to the resources in the Common
Language Runtime (CLR).

vbc /t:library /out:component.dll component.vb

If the component imports other libraries, you must reference them in the
compile statement. For example, if you are using the System.Data namespace,
include the System.Data.dll library, as shown in the following example:

vbc /t:library /out:component.dll /r:System.Data.dll
component.vb

Finally, after compiling the component, move it to the \bin folder in the root of
the virtual directory for your Web site.

You must define a virtual directory for your Web site.

The component is now available for use in an ASP.NET page.

Important

24 Module 4: Separating Code from Content

Using Components in an ASP.NET Page

n Adding a Component

n Using the Component

<%@ Import Namespace="myComponent" %> <%@ Import Namespace="myComponent" %>

Dim x As New ConferenceDB
ds = x.getCategories(conn)
Dim x As New ConferenceDB
ds = x.getCategories(conn)

component.dll

Namespace myComponent
Class ConferenceDB
End Class

End Namespace

*****************************illegal for non-trainer use******************************

By default, ASP.NET loads all assemblies from the /bin directory when the
application is started. The assemblies to load are specified through the
configuration system. Additional assemblies may also be imported into an
application by using the configuration file.

Because the assembly is pre-loaded by the ASP.NET run time, only a simple
namespace import or variable declaration is required to make the component
available.

There are two ways to use the classes defined in a component. You can either
import the namespace by using an @Import directive, or reference the
namespace when declaring a variable.

Using the @Import directive
To include any component in an ASP.NET page, you need to add the @Import
directive that specifies the namespace to include at the top of the page. For
example, to include the myComponent component, you add the following
directive at the top of the page:

<%@ Import Namespace="myComponent" %>

You can then instantiate an object of the class by referencing the class name
directly, as shown in the following example.

Dim x As New ConferenceDB

 Module 4: Separating Code from Content 25

Referencing Namespace when Declaring a Variable
You can also declare a variable directly from a component, without adding the
@Import directive to the page, by referencing the namespace in the declaration.
For example, to declare a variable from the myComponent component, use the
following code:

Dim x As New myComponent.ConferenceDB

If you create and compile the component in Visual Studio .NET, you will
need to preface the namespace with the name of the Visual Studio .NET project.
For example, if the component.vb file is located in a Visual Studio .NET project
named demos, you would use the following Imports statement or variable
declaration to reference it:

<%@ Import Namespace="demos.myComponent" %>
or
Dim x As New demos.myComponent.ConferenceDB

Calling Component Methods
After you have instantiated an object from the class, you can access its
properties and methods. The following example shows how to call the
getCategories method of the ConferenceDB class.

ds = x.getCategories(conn)

Note

26 Module 4: Separating Code from Content

Demonstration: Creating and Using a Component

*****************************illegal for non-trainer use******************************

In this demonstration, you will see a simple component and how to use it in an
ASP.NET page.

å To run the demonstration

1. Open the file component.vb from the folder
<install folder>\DemoCode\Mod04.

2. Compile the file (manually, or using Visual Studio .NET).

a. If you use the batch file mkdemos.bat to compile the component, you
need to create a \bin folder in the <install folder> folder, which is the
root of the 2063 virtual directory, and move the component.dll file into it.

b. If you build in Visual Studio .NET, the assembly is automatically moved
to the \bin folder of the project, but you will need to change the
@Import directive in the displaycomponent.aspx page to:

<%@ Import Namespace="projectname.myComponent" %>

3. Open the displaycomponent.aspx page.

The @Import directive imports the namespace from the component. The
getCategories function is called in the Page_Load event procedure.

4. View the displaycomponent.aspx page in Internet Explorer. View the source
HTML of the page.

The code from the component was not added to the file.

 Module 4: Separating Code from Content 27

Lab 4: Separating Code from Content

*****************************illegal for non-trainer use******************************

Objectives
After completing this lab, you will be able to:

n Create a user control.

n Insert a user control into an .aspx page.

n Create and use components.

Prerequisite
Before working on this lab, you must know how to use Web controls in an
ASP.NET page.

Lab Setup
There are starter and solution files associated with this lab. The starter files are
in the folder <install folder>\Labs\Lab04\Starter and the solution files for this
lab are in the folder <install folder>\Labs\Lab04\Solution.

The ASPNET Web application uses classes in the Conference component.
There are five files in this component: ConferenceDB.vb, CustomersDB.vb,
ProductsDB.vb, ShoppingCartDB.vb, and OrdersDB.vb. These files are in the
Components folder of the ASPNET Web application. If, for any reason, you
need to rebuild the Conference component, run the mk.bat batch file from a
command prompt. The mk.bat batch file creates the conference.dll component
and then puts it in the bin folder of the ASPNET Web application.

28 Module 4: Separating Code from Content

Scenario
All the Web pages in the ASPNET Web site have the same controls at the top
and down the left side of the page. These controls can be put into user controls
and then easily added to the pages. In Exercise 1, you will create a user control
and in Exercise 2, you will add the user control to the ProductsList.aspx page.

Also, many of the pages in the ASPNET Web site use data obtained from the
Conference database. In Exercise 3, you will create a component to isolate and
reuse the data access code. In Exercise 4, you will call methods on your
component from the ProductsList.aspx page.

Estimated time to complete this lab: 60 minutes

 Module 4: Separating Code from Content 29

Exercise 1
Creating a Menu User Control

In this exercise, you will convert an .aspx page into a user control. The page
Menu.aspx reads categories of data from the database and displays them in a
DataList Web control. In this exercise, you will convert the Menu.aspx page
into a user control.

å To create the user control file
1. Open the file named Menu.aspx from the ASPNET Web site.

2. Remove the HTML tags.

3. Remove the BODY tags.

4. Change the @Page directive into an @Control directive.

<%@ Control Language="vb" %>

5. Save the page as _Menu.ascx (overwrite the existing _Menu.ascx file).

30 Module 4: Separating Code from Content

Exercise 2
Using User Controls

In this exercise, you will add two user controls to the ProductsList.aspx page.
One control will be located along the top of the page and can be found in the
file _header.ascx. The other will be located at the left side of the page and can
be found in the file _menu.ascx that you just created in Exercise 1.

When you are finished with this exercise, the page ProductsList.aspx should
look like the following illustration.

å To add the header and menu user controls

1. Open the page ProductsList.aspx in the ASPNET Web site.

2. Include the header and menu user controls at the beginning of the page by
using the @Register directive. Set the attributes for the controls as shown in
the following table.

TagPrefix TagName Src

Conference Header _Header.ascx

Conference Menu _Menu.ascx

Your code should look like the following:

<%@ Register TagPrefix="Conference" TagName="Header"
 Src="_Header.ascx" %>
<%@ Register TagPrefix="Conference" TagName="Menu"
 Src="_Menu.ascx" %>

 Module 4: Separating Code from Content 31

3. Create an HTML table in the body of the page to hold the two user controls
and the contents of the original page. You will need to build the table
around the existing contents of the page.

HEADER

M
E
N
U

CONTENT

Your HTML code should look like the following:

<table width="100%" border=0>
 <tr><td>
 <!-- _Header.ascx user control -->
 </td></tr>
 <tr><td>
 <table border=0>
 <tr><td valign="top">
 <!-- _Menu.ascx user control -->
 </td>
 <td>

 <!-- Existing contents of the page -->
 <!-- between <body> and </body> tags -->

 </td>
 </tr>
 </table>
 </td></tr>
</table>

32 Module 4: Separating Code from Content

4. Add the header and menu user controls to the correct position in the table.

Your HTML code should look like the following:

<table width="100%" border=0>
 <tr><td>
 <!-- _Header.ascx user control -->
 <Conference:Header runat="server"/>
 </td></tr>
 <tr><td>
 <table border=0>
 <tr><td valign="top">
 <!-- _Menu.ascx user control -->
 <Conference:Menu runat="server"/>
 </td>
 <td>

 <!-- Existing contents of the page -->
 <!-- between <body> and </body> tags -->

 </td>
 </tr>
 </table>
 </td></tr>
</table>

å To save and test your work
1. Save your changes to ProductsList.aspx.

2. Using Internet Explorer, go to the ProductsList page of the ASPNET Web
site by viewing:
http://localhost/ASPNET/ProductsList.aspx?CategoryID=15

CategoryID=15 corresponds to the Conference Tracks category in
the Categories table of the database.

Notice the header and menu user controls.

Note

 Module 4: Separating Code from Content 33

Exercise 3
Building a Component

Currently, the page ProductsList.aspx reads data from the database and displays
it in a Repeater control. In this exercise, you will build a component,
GetProducts.vb, to read the data from the database. Then, in Exercise 4, you
will use that component in the ProductsList.aspx page.

å To create the GetProducts.vb component

1. Create a new file named GetProducts.vb in the Components folder of the
ASPNET Web site.

If you are using Visual Studio .NET, do the following:

a. Right-click on the Components folder in the ASPNET project in the
Solution Explorer window, click Add, and then click Add Component.

b. In the Add New Item dialog box, click Component Class, type
GetProducts.vb in the Name field, and then click Open to generate and
open the new file.

2. Add the following code to import namespaces:

Imports System.Data
Imports System.Data.SqlClient

3. Create a new namespace named db2063.

4. Create a public class named Products.

Your code should look like the following:

Namespace db2063
Public Class Products

End Class
End Namespace

34 Module 4: Separating Code from Content

å To add a method to the Products class

1. Create a new function named GetProducts that takes an Integer parameter
named categoryID and returns a DataSet.

Public Function GetProducts(categoryID As Integer) As _
 DataSet

2. Open the ProductsList.aspx page.

3. Cut the content of the Page_Load event procedure, except for the first
instruction that reads the CategoryID query string parameter and the last
two instructions that set the DataSource of the Repeater controls. The
Page_Load event procedure code should look like the following after you
have cut the instructions as specified above:

Sub Page_Load(Source As Object, E As EventArgs)
 'Obtain CategoryID from QueryString
 Dim categoryID As Integer = _
 CInt(Request.Params("CategoryID"))

 ' Bind to the control
 repList.DataSource = dsProducts.Tables(0).DefaultView
 repList.DataBind()
End Sub

4. Save the changes to ProductsList.aspx.

5. Paste this code into the GetProducts function in the GetProducts.vb
component.

 Module 4: Separating Code from Content 35

6. Add a return statement to return the Dataset at the end of the function.

Your function should look like the following:

Public Function GetProducts(categoryID As Integer) As _
DataSet
 Dim conn As SqlConnection
 Dim strConn As String
 Dim cmdProducts As SqlDataAdapter
 Dim paramCategoryID As SqlParameter
 Dim dsProducts As New DataSet

 ' Create the connection
 strConn = _
 "server=localhost;uid=sa;pwd=1Aspnet;database=Conf"
 conn = New SqlConnection(strConn)

 ' Call the ProductsByCategory stored procedure
 cmdProducts = _
 New SqlDataAdapter("ProductsByCategory", conn)
 cmdProducts.SelectCommand.CommandType = _
 CommandType.StoredProcedure

 ' Add Parameters
 paramCategoryID = _
 New SqlParameter("@CategoryID", SqlDbType.Int, 4)
 paramCategoryID.Value = categoryID
 cmdProducts.SelectCommand.Parameters.Add(paramCategoryID)

 ' Fill the DataSet
 cmdProducts.Fill(dsProducts, "Products")

 ' Return the DataSet
 return dsProducts

End Function

Visual Studio .NET Beta 2 may insert parentheses at the end of your
function declaration or elsewhere. Be sure to compare your code with the
preceding example and remove any extra parentheses before continuing.

7. Save your changes to GetProducts.vb.

Note

36 Module 4: Separating Code from Content

å To compile the component

There are two ways to compile the component: in an MS -DOS command
prompt, or in Visual Studio .NET.

1. To compile the component in an MS -DOS command prompt:

a. Open an MS-DOS command prompt.

b. Navigate to the folder InetPub\wwwroot\ASPNET\components.

c. Run the following command:

vbc /t:library /out:..\bin\db2063.dll /r:System.dll
/r:System.Web.dll /r:System.Xml.dll /r:System.Data.dll
GetProducts.vb

The compiler generates a file named db2063.dll in the ASPNET\bin
directory.

2. To compile the component in Visual Studio .NET, on the Build menu, click
Build.

The compiler adds the new class to the project assembly named
ASPNET.dll in the ASPNET\bin directory.

 Module 4: Separating Code from Content 37

Exercise 4
Calling a Component

In this exercise, you will call the component that you built in Exercise 3 to get a
DataSet of products that you will display on the ProductsList.aspx page.

Client Middle-tier
components

Data

GetProducts.vb ProductsByCategory Stored Procedure

ProductList.aspx

å To call the component from the ProductsList.aspx page
1. Open the page ProductsList.aspx from the ASPNET Web site.

2. Edit the Page_Load event procedure.

3. Declare a variable named productCatalog that is an instance of the
Products class in the db2063 namespace.

If you used Visual Studio .NET to compile the component, you must
preface the namespace of the component with the root namespace (the
project name) of the project.

If you used a command prompt to compile the component, your code should
look like the following:

Dim productCatalog As New db2063.Products

If you used Visual Studio .NET to compile the component, your code
should look like the following:

Dim productCatalog As New ASPNET.db2063.Products

4. Declare a DataSet variable named dsProducts.

5. After the code that reads the categoryID parameter from the QueryString
object, call the GetProducts method of the component and save the result in
the dsProducts variable.

Your code should look like the following:

Dim dsProducts As New DataSet

dsProducts = productCatalog.GetProducts(CategoryID)

Note

38 Module 4: Separating Code from Content

å To save and test your work

1. Save your changes to ProductsList.aspx.

2. Using Internet Explorer, go to the ProductsList page of the ASPNET Web
site by viewing:
http://localhost/ASPNET/ProductsList.aspx?CategoryID=15

The page should display the table of conference tracks.

 Module 4: Separating Code from Content 39

Review

n Advantages of Partitioning an ASP.NET Page

n Creating and Using Code-Behind Pages

n Creating and Using User Controls

n Creating and Using Components

*****************************illegal for non -trainer use******************************

1. List some of the advantages of separating code from content.

2. How do you link the user interface page to its code-behind file?

3. What are the ASP.NET namespaces that you need to import in a code-
behind class file?

40 Module 4: Separating Code from Content

4. What are some of the differences between a regular ASP.NET page and a
user control?

5. What is the biggest advantage that ASP.NET offers for using external
components?

6. How do you use a user control from an ASP.NET page?

7. How do you use a component from an ASP.NET page?

