

Contents

Overview 1

Overview of Tracing 2

Trace Information 3

Page-Level Trace 4
Application-Level Trace 10

Lab 5: Adding Trace to an ASP.NET Page 16

Review 21

Module 5: Using Trace
in Microsoft ASP.NET
Pages

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, FrontPage, IntelliSense, Jscript, Outlook,
PowerPoint, Visual Basic, Visual InterDev, Visual C++, Visual C#, Visual Studio, and Windows
Media are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 5: Using Trace in Microsoft ASP.NET Pages 1

Overview

n Overview of Tracing

n Trace Information

n Page-Level Trace

n Application-Level Trace

*****************************illegal for non-trainer use******************************

In earlier versions of Active Server Pages (ASP), code tracing was
accomplished by inserting Response.Write statements w herever required. A
drawback of this technique was the removal of the excess code that was added
when the application was deployed, and the resulting inability to use the output
from the Response.Write statements in a production environment. Microsoft®

ASP.NET overcomes such drawbacks by introducing an automatic tracing
mechanism. This tracing mechanism can be enabled and disabled either on a
page-by-page basis or for an entire application, and it can be configured in the
web.config file.

After completing this module, you will be able to:

n Describe page-level and application- level tracing.

n Enable and disable tracing for an ASP.NET page.

n Add custom trace information.

2 Module 5: Using Trace in Microsoft ASP.NET Pages

Overview of Tracing

n With Tracing You Can:

l Output variables or structures

l Assert whether a condition is met

l Trace through the execution path of the application

n Can Be Enabled and Disabled, Either on a Page-By-Page
Basis or for an Entire Application

*****************************illegal for non-trainer use******************************

The tracing feature in ASP.NET enables you to insert debugging print
statements into your code. These statements allow you to output variables or
structures, assert whether a condition is met, or trace through the execution path
of the application.

All of this information is output to an .aspx page or saved to a log, depending
on settings in the web.config file.

You can also use the Debug object to output debugging information. By using
methods in the Debug object to print debugging information and check your
logic with assertions, you can make your code more robust without impacting
your shipping product's performance and code size.

While you are debugging an application during development, both your trace
and debug output statements go to the Output window in Microsoft
Visual Studio® .NET. However, with trace statements, you can debug a
production Web site simply by changing a setting in the web.config file and
having the trace statements output on the page.

In this course, we will focus only on the trace feature of ASP.NET.

 Module 5: Using Trace in Microsoft ASP.NET Pages 3

Trace Information

*****************************illegal for non -trainer use******************************

Tracing provides plenty of information to the developer of an ASP.NET
application. The trace output screen contains the following categories of
information.

Category Description

Control Tree List of all items on the page.

Cookies Collection List of cookies being used.

Form Collection List of controls and their values on the form being posted.

Headers Collection List of items in the Hypertext Transfer Protocol (HTTP)
header.

Request Details Information about the request: session ID, time of request,
type of request, and request status.

Server Variables List of all server variables and their values.

Trace Information Output from standard and custom trace statements.

4 Module 5: Using Trace in Microsoft ASP.NET Pages

u Page-Level Trace

n How Does Page-Level Trace Work?

n Demonstration: Adding Page-Level Trace Statements

n Tracing into a Component

*****************************illegal for non-trainer use******************************

You can use page-level tracing to write debugging statements directly to the
output of a page and to conditionally execute debugging code when tracing is
enabled. The performance data and the developer-specified messages (if any)
are injected into the Hypertext Markup Language (HTML) output stream to the
client to help clarify precisely what occurs when the framework processes a
page request.

In this section, you will learn how the page-level trace mechanism works.

 Module 5: Using Trace in Microsoft ASP.NET Pages 5

How Does Page-Level Trace Work?

n Enabling Tracing for a Page

n Sorting Output by Category

n Inserting Trace Messages

n Conditional Execution with Trace.IsEnabled

<%@ Page Language="VB" Trace="true"%><%@ Page Language="VB" Trace="true"%>

<%@ Page Language="VB" Trace="true"
TraceMode="SortByCategory"%>

<%@ Page Language="VB" Trace="true"
TraceMode="SortByCategory"%>

Trace.Write("category", "message")Trace.Write("category", "message")

If Trace.IsEnabled
strTrace = 'create trace string here

End If
Trace.Write(strTrace)

If Trace.IsEnabled
strTrace = 'create trace string here

End If
Trace.Write(strTrace)

*****************************illegal for non -trainer use******************************

The page-level trace mechanism performs two functions when it is enabled:

n It automatically appends a table of performance data to the end of the page.

n It allows developers to insert custom diagnostic messages throughout their
code.

Enabling Tracing for a Page
The trace capability must be enabled prior to use. To enable tracing for a page,
include the following directive at the top of the page code:

<%@ Page Language="VB" Trace="true" %>

The page exposes the Trace property of the type TraceContext, which can be
used to output debugging statements to the page output. The default value of the
Trace attribute is set to False.

Sorting Trace Messages
The TraceContext class contains the TraceMode property that defines how
trace messages are sorted in the page output.

<%@ Page Trace="true" TraceMode="SortByCategory" %>

TraceMode is of the type TraceModeEnum, and has two possible values:

n SortByTime

Trace messages are output in order of chronological occurrence. This is the
default setting.

n SortByCategory

Trace messages are sorted alphabetically by the category argument to the
Trace.Write and Trace.Warn methods.

6 Module 5: Using Trace in Microsoft ASP.NET Pages

Inserting and Organizing Trace Messages
You can use the Trace object to write debugging statements. You can use two
methods to insert custom messages: Trace.Write and Trace.Warn.
Trace.Write is used to display messages. Trace.Warn is used to display
warnings. Trace.Write and Trace.Warn are easy to distinguish because
Trace.Warn uses a red font color for its output, whereas Trace.Write uses the
default font color.

In their simplest forms, each method takes two string arguments:

Trace.Write("category", "message")
Trace.Warn("category", "message")

The category argument is used to organize messages. For example:

Trace.Write("Custom Trace","Beginning User Code...")
Trace.Warn("Custom Trace","Array count is null!")

Conditional Execution with Trace.IsEnabled
Often, you will need to execute additional code to construct the statements to
pass to the Trace.Write or Trace.Warn methods . The code should execute
only if tracing is enabled for the page. To support this, the page exposes a
Boolean property, Trace.IsEnabled, that returns True only if tracing is
enabled for the page. You should first check the Trace.IsEnabled property to
guarantee that your debugging code will execute only when tracing is enabled.

If Trace.IsEnabled
 strTrace = "create a trace string here"
End If
Trace.Write(strTrace)

 Module 5: Using Trace in Microsoft ASP.NET Pages 7

Demonstration: Adding Page-Level Trace Statements

*****************************illegal for non-trainer use******************************

In this demonstration, you will learn how to use trace at the page level.

å To run the demonstration

1. Edit the file add.aspx in the folder <install folder>\Democode\Mod05.

2. Enable tracing by adding the Trace="True" attribute to the @Page
directive.

<%@ Page Language="vb" Trace="True"%>

3. View the page in Microsoft Internet Explorer.

Trace messages are shown on the page.
4. Add a custom trace message to the Page_Load event.

Trace.Write ("add Page_Load", "txtNum1 = " &
Cstr(txtNum1.pNum))

5. View the page again.

6. Disable tracing, and then view the page again.

No trace messages are shown on the page.
7. Add a trace message to the numberbox.ascx user control.

8. Enable tracing in add.aspx, and view the page in Internet Explorer.

8 Module 5: Using Trace in Microsoft ASP.NET Pages

Tracing into a Component

n Import the System.Web Library

n Enable Tracing in Class Constructor

n Add Trace Statements to Method

Imports System.WebImports System.Web

HttpContext.Current.Trace.IsEnabled = TrueHttpContext.Current.Trace.IsEnabled = True

HttpContext.Current.Trace.Write _
("component", "this is my trace statement")

HttpContext.Current.Trace.Write _
("component", "this is my trace statement")

*****************************illegal for non -trainer use******************************

If you have a component that is called from an ASP.NET page, you can also
add trace statements to the component.

å To add trace to a component
1. At the top of the component, import the System.Web library.

Imports System.Web

2. In the constructor of the class to which you want to add trace statements,
enable tracing with the following statement:

HttpContext.Current.Trace.IsEnabled = True

In the preceding code, HttpContext.Current gets the Context object for
the current request.

3. Next, in the method, use the following:

HttpContext.Current.Trace.Write _
 ("component", "this is my trace statement")

 Module 5: Using Trace in Microsoft ASP.NET Pages 9

The following table lists some useful information about the results of enabling
trace on a page or component.

Case Result

If you enable trace in the constructor
of the component.

All pages that access the component will have
trace enabled even if the page does not have it
enabled.

If you enable trace in a component
method.

Only the page that accesses the method of the
component will have trace enabled, even if the
page does not have trace enabled.

If you disable trace in the constructor
of the component.

All pages that access the component will have
trace disabled even if the page has trace
enabled.

If you do not explicitly enable or
disable trace for a component, but the
page that calls the component has
trace enabled.

Trace in the component will be enabled for that
specific page.

10 Module 5: Using Trace in Microsoft ASP.NET Pages

u Application-Level Trace

n How Does Application-Level Trace Work?

n Demonstration: Adding Application-Level Trace
Statements

*****************************illegal for non-trainer use******************************

ASP.NET also provides a way to enable tracing for the entire application, rather
than just a single page of the application. An ASP.NET application is the
collection of files and folders in a virtual root of Internet Information Services
(IIS).

In this section, you will learn how an application-level trace works.

 Module 5: Using Trace in Microsoft ASP.NET Pages 11

How Does Application-Level Trace Work?

n Application-Level Trace Collects Additional Statistics
from a Request in the trace.axd File

n Enabling Application-Level Trace in web.config

<trace enabled="true"
traceMode="SortByCategory"
requestLimit="40"
pageOutput="true"/>

<trace enabled="true"
traceMode="SortByCategory"
requestLimit="40"
pageOutput="true"/>

*****************************illegal for non-trainer use******************************

In addition to the page-level trace functionality, ASP.NET provides a way to
enable trace output for an entire application. Enabling trace at the application
level has the effect of enabling page- level trace for every page within that
application, provided that there is no page-level directive to explicitly disable
trace. When application- level tracing is enabled, the ASP.NET runtime also
collects several additional statistics, such as the state of the control hierarchy,
the contents of session and application state, the form and query string input
values, and so on. These statistics are collected for a specified number of
requests as determined by the application’s configuration file.

Enabling Tracing
With ASP.NET, there is a configuratio n file that you can use to configure
certain application attributes. This file is named web.config and is located in the
root folder of the application. You will learn more about the web.config file in
Module 7, “Creating a Microsoft ASP.NET Web Application,” in Course
2063B, Introduction to Microsoft ASP.NET.

The web.config file is in Extensible Markup Language (XML) format; therefore,
all section and attribute names are case-sensitive.

To enable tracing for an application, place the following code in the web.config
file in the application’s root folder.

<trace enabled="true"/>

12 Module 5: Using Trace in Microsoft ASP.NET Pages

By using the above configuration, each page in the application will output page-
level trace statements to the file trace.axd in the application’s root folder, as
shown in the following illustration.

If you want trace messages to be displayed on the individual pages of your
application, set the PageOutput attribute of the trace element to True.

<trace enabled="true" pageOutput="true"/>

The trace section in the configuration file is contained in a <system.web>
section inside the <configuration> section.

<configuration>
 <system.web>
 <trace enabled="true"/>
 </system.web>
</configuration>

Note

 Module 5: Using Trace in Microsoft ASP.NET Pages 13

Setting Trace Attributes
The trace section of the configuration file also supports an attribute for
controlling whether trace statements are output to the client browser or are
available only from trace.axd. The attributes supported in the trace
configuration section are listed in the following table.

Value Description

enabled Set to True or False. Indicates whether tracing is enabled for the

application or not. Default is True.

pageOutput Indicates whether trace information should be rendered at the end of
each page, or accessible only through the trace.axd utility. Default is
False (trace information is only accessible through trace.axd).

requestLimit Number of trace requests to store on the server. Default is 10.

traceMode Set to sortByTime or sortByCategory. Indicates the display order
for trace messages. Default is sortByTime .

The following example shows how you can set trace attributes. The following
configuration collects trace information for up to 40 requests and prevents trace
statements from being output to the requesting browser:

<trace enabled="true" traceMode="sortByCategory"
 requestLimit="40" pageOutput="false"/>

14 Module 5: Using Trace in Microsoft ASP.NET Pages

Demonstration: Adding Application-Level Trace Statements

*****************************illegal for non-trainer use******************************

In this demonstration, you will learn how to use trace at the application level.

å To run the demonstration

1. Copy the web.config file from the folder
<install folder>\DemoCode\Mod05 to the <install folder>, which is the
virtual root of the 2063 Web site.

2. Edit the web.config file and enable application-level tracing by adding the
following line of code to the file:

<trace enabled="true"/>

3. View the page http://localhost/2063/DemoCode/Mod05/postback.aspx in
Internet Explorer.

You will not see any trace output in the page.

4. View the page http://localhost/2063/trace.axd in Internet Explorer and look
at the details for the postback.aspx request.

You may need to click Refresh to see the latest entries in the
trace.axd page.

This is where the details are shown. Scroll down to show the values sent to
the form.

Note

 Module 5: Using Trace in Microsoft ASP.NET Pages 15

5. Change web.config to display the trace messages on the page by adding the
pageOutput="true" attribute to the trace element.

6. View the page http://localhost//2063/DemoCode/Mod05/postback.aspx in
Internet Explorer again.

Now the trace messages are displayed on the page.

7. When you are done with this demonstration, delete the web.config file in the
root of the 2063 virtual directory so that tracing will be turned off for future
demonstrations.

16 Module 5: Using Trace in Microsoft ASP.NET Pages

Lab 5: Adding Trace to an ASP.NET Page

***************** ************illegal for non-trainer use******************************

Objectives
After completing this lab, you will be able to:

n Enable and disable tracing for an ASP.NET page.

n Add custom trace messages to an ASP.NET page and a middle-tier
component.

Prerequisite
Before working on this lab, you must know how to compile a component.

Lab Setup
There are starter and solution files associated with this lab. The starter files are
in the folder <install folder>\Labs\Lab05\Starter and the solution files for this
lab are in the folder <install folder>\Labs\Lab05\Solution.

Estimated time to complete this lab: 30 minutes

 Module 5: Using Trace in Mi crosoft ASP.NET Pages 17

Exercise 1
Enabling Tracing

In this exercise, you will enable and disable tracing and add custom messages to
the trace stream.

å To enable tracing in a page
1. Open the file ProductsList.aspx in the folder InetPub\wwwRoot\ASPNET.

2. At the beginning of the code, modify the existing @Page directive, add the
trace attribute, and set its value to True, as shown in the following code:

<%@ Page Language="vb" trace="true" %>

3. Save your changes to the ProductsList.aspx page.

4. View the page in Internet Explorer.

You should see the trace information at the bottom of the page.

å To add custom trace messages

1. Go to the beginning of the Page_Load event procedure of the
ProductsList.aspx page and add a trace message that displays Beginning of
Page_Load in a category named Product List.

Your code should look like the following:

Trace.Write("Product List", "Beginning of Page_Load")

2. Add another trace message to the end of the Page_Load event procedure
that displays End of Page_Load.

3. Add a third trace message that displays the value of the variable categoryID
after reading it from the QueryString.

4. Save your changes to ProductsList.aspx.

18 Module 5: Using Trace in Microsoft ASP.NET Pages

5. View ProductsList.aspx in Internet Explorer, passing the CategoryID=15:

http://localhost/ASPNET/ProductsList.aspx?CategoryID=15

You should see your custom messages in the Trace Information section, as
shown in the following illustration.

 Module 5: Using Trace in Microsoft ASP.NET Pages 19

Exercise 2
Tracing into a Component

In this exercise, you will add trace statements to the DB2063 component that is
called from the ProductsList.aspx page.

å To enable tracing in the DB2063 component

1. Open the file GetProducts.vb in the folder
InetPub\wwwRoot\ASPNET\Components.

2. Import the System.Web library.

Your import statement should look like the following:

Imports System.Web

3. In the GetProducts method, enable tracing by setting the
HttpContext.Current.Trace.IsEnbled property to True.

Your code should look like the following:

HttpContext.Current.Trace.IsEnabled = true

You can also put this command in the constructor of the class if you need
to use tracing in the whole component.

å To add custom trace messages

1. Go to the beginning of the GetProducts method and add a custom trace
message that displays Beginning of GetProducts in a category named
DB2063.Products Component.

Your additional instruction should look like the following:

HttpContext.Current.Trace.Write _
 ("DB2063.Products Component", _
 "Beginning of GetProducts")

2. Add another trace message at the end of the procedure, before the Return
command that displays End of GetProducts.

3. Add a third trace message to the GetProducts method that displays the
value of the categoryID parameter .

Note

20 Module 5: Using Trace in Microsoft ASP.NET Pages

å To save and test

1. Save your changes to GetProducts.vb.

2. Compile the component.

a. To compile the component by using an MS -DOS® command prompt,
open an MS-DOS command prompt, navigate to the folder
InetPub\wwwroot\ASPNET\components, and run the following
command:

vbc /t:library /out:..\bin\db2063.dll /r:System.dll
/r:System.Web.dll /r:System.Xml.dll /r:System.Data.dll
GetProducts.vb

b. To compile the component by using Visual Studio .NET, click Build on
the Build menu.

If you compile the component by using Visual Studio .NET, you will
need to change the Page_Load event procedure in the ProductsList.aspx
page to instantiate the Products object from the newly built DB2063
component in the ASPNET project.

Dim productCatalog As New ASPNET.db2063.Products

3. View the ProductsList.aspx page in Internet Explorer, again passing the
categoryID=15:

http://localhost/ASPNET/ProductsList.aspx?CategoryID=15

You should see your custom messages from the page and from the
component in the Trace Information section, as shown in the following
illustration.

Note

 Module 5: Using Trace in Microsoft ASP.NET Pages 21

Review

n Overview of Tracing

n Trace Information

n Page-Level Trace

n Application-Level Trace

*****************************illegal for non-trainer use******************************

1. How do you enable page-level tracing?

2. What is the difference between the Trace.Write and Trace.Warn methods?

3. What property is used to sort trace messages in a page?

4. How do you enable application- level trace?

22 Module 5: Using Trace in Micros oft ASP.NET Pages

5. If you have trace enabled in a component, but disabled in the page that calls
the component, will the trace messages be displayed?

6. If you have trace enabled for a page, but neither enabled nor disabled in a
component called by the page, will the trace messages from the component
be displayed?

