

Contents

Overview 1

Requirements of a Web Application 2

What Is New in ASP.NET? 3

Sharing Information Between Pages 13
Securing an ASP.NET Application 24

Lab 7: Creating an ASP.NET Web
Application 38

Review 50

Module 7: Creating a
Microsoft ASP.NET
Web Application

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, FrontPage, IntelliSense, Jscript, Outlook,
PowerPoint, Visual Basic, Visual InterDev, Visual C++, Visual C#, Visual Studio, and Windows
Media are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 7: Creating a Microsoft ASP.NET Web Application 1

Overview

n Requirements of a Web Application

n What Is New in ASP.NET?

n Sharing Information Between Pages

n Securing an ASP.NET Application

*****************************illegal for non-trainer use******************************

Just as in Active Server Pages (ASP), Microsoft® ASP.NET supports the
concept of a Web application with applic ation-specific settings and services. An
ASP.NET application is defined as all the files, pages, handlers, modules, and
executable code that can be invoked from a virtual directory and its sub-
directories on a Web application server.

In this module, you will learn about some of the files that are used to build Web
applications and some of the capabilities of an ASP.NET application, such as
maintaining state and authentication. You will also learn how to configure and
deploy an ASP.NET application.

After completing this module, you will be able to:

n Describe cookie-less sessions.

n Set up cookie-less sessions in the web.config file.

n Use event procedures in global.asax.

n Set up page output caching for ASP.NET pages.

n Share information between pages of an ASP.NET application by using
ASP.NET cache, web.config, session variables, and a database.

n Describe how authentication works.

n Set up authentication for an application in web.config.

2 Module 7: Creating a Microsoft ASP.NET Web Application

Requirements of a Web Application

n State Maintenance

n Security

n Performance and Scalability

n Easy Configuration

n Easy Deployment

*****************************illegal for non-trainer use******************************

A good Web application meets the following requirements:

n State maintenance

Web applications should be able to maintain state across pages. If state is
maintained between pages, information supplied by users can be reused and
users do not need to enter the same information multiple times.

n Security

A good Web application should have security features. Most importantly, it
should be able to authenticate and authorize users who can access the
application.

n Performance and scalability

All Web applications should be built with high performance and scalability
in mind. Caching is an extremely important technique for building high-
performance, scalable Web server applications.

n Easy configuration

Configuration is an important aspect of any application. A central
requirement of any Web application server is a rich and flexible
configuration system. The objective is to enable developers to associate
settings easily with an installable application without needing to embed
values into code. This allows administrators to adjust or customize these
values easily after the Web application has been deployed.

n Easy deployment

Historically, one of the biggest problems associated with Web applications
is deployment. A well-designed Web application is easy to deploy.

 Module 7: Creating a Microsoft ASP.NET Web Application 3

u What Is New in ASP.NET?

n Cookie-less Session IDs

n Configuration File (web.config)

n Setting Up Cookie-less Sessions

n Global Application File (Global.asax)

n Demonstration: Using Event Procedures in Global.asax

n Page Caching

*****************************illegal for non -trainer use******************************

In addition to all of the features provided by ASP, ASP.NET provides several
new features designed to enhance the functionality of an application. This
section focuses on the new features in ASP.NET.

4 Module 7: Creating a Microsoft ASP.NET Web Application

Cookie-less Session IDs

n Each Active Session Is Identified and Tracked Using
Session IDs

n SessionIDs Are Communicated Across Client-Server
Requests Using an HTTP Cookie or Included in the URL

n Using a Cookie

l Default mechanism for storing SessionIDs

n Cookie-less Sessions

l Information is encoded into URLs

http://server/(h44a1e55c0breu552yrecobl)/page.aspxhttp://server/(h44a1e55c0breu552yrecobl)/page.aspx

*****************************illegal for non-trainer use******************************

Each active session in ASP.NET is identified and tracked by using a 120-bit
SessionID string containing Uniform Resource Locator (URL) -legal ASCII
characters. SessionID values are generated by using an algorithm that
guarantees both uniqueness and randomness. SessionIDs are communicated
across client-server requests by using either a Hypertext Transfer Protocol
(HTTP) cookie or included in the URL.

Using Cookies
Cookies are a mechanism by which data can be maintained in a file on the
user's computer. By default, SessionIDs are stored in cookies.

However, users can turn of f cookies through a setting in their browsers. This
creates the risk that your Web application will not work if it requires session
information conveyed by cookies and a user has disabled cookies in his or her
browser.

 Module 7: Creating a Microsoft ASP.NET Web Application 5

Using Cookie-less Sessions
The ability to use cookie-less sessions in ASP.NET is a new concept that was
not available with earlier technologies, including ASP.

This method uses URLs, as opposed to cookies, to pass the SessionID to an
ASP.NET page. It involves encoding data into a URL, which is done
automatically by the browser. This enables you to use session state even with
browsers that have cookie support disabled.

For example, the browser generates the following URL for a request to the
ShoppingCart.aspx page on the http://localhost/conference web site:

http://localhost/conference/(h44a1e55c0breu552yrecobl)/ShoppingCart.aspx

To enable cookie-less sessions, add the following to the web.config
configuration file:

<sessionState cookieless="true"/>

6 Module 7: Creating a Microsoft ASP.NET Web Application

Configuration File (web.config)

n All Configuration Information for an ASP.NET
Application Is Contained in web.config

n Web.config Can Be Placed in the Same Folder as the
Application Files

n Web.config Contains Sections for Each Major Category
of ASP.NET Functionality

<configuration>
<system.web>

<trace enabled="true"
requestlimit="40" pageoutput="true"/>

</system.web>
</configuration>

<configuration>
<system.web>

<trace enabled="true"
requestlimit="40" pageoutput="true"/>

</system.web>
</configuration>

*****************************illegal for non-trainer use******************************

ASP.NET configuration uses hierarchical configuration architecture. All
configuration information for an ASP.NET application is contained in
configuration files named web.config that can be placed in the same directories
as the application files. Child directories inherit the settings of the parent
directories unless overridden by a web.config file in the child directory.

If a web.config file is present at the root directory of a Web serverfor
example, Inetpub\wwwrootthe configuration settings will apply to every
application in that server.

The presence of a web.config file within a given directory or application root is
optional. If a web.config file is not present, all configuration settings for the
directory are automatically inherited from the parent directory. The root
configuration file for all Web applications is named machine.config, and is
found in the c:\winnt\Microsoft.NET\Framework\v<version_number>\Config
folder.

 Module 7: Creating a Microsoft ASP.NET Web Application 7

In a web.config file, there are sections for each major category of ASP.NET
functionality, as shown in the following table.

Section name Description

<browsercaps> Responsible for controlling the settings of the browser

capabilities component.

<compilation> Responsible for all compilation settings used by ASP.NET.

<globalization> Responsible for configuring the globalization settings of an
application.

<httpmodules> Responsible for configuring HTTP modules within an
application. HTTP modules participate in the processing of
every request into an application. Common uses include security
and logging.

<httphandlers> Responsible for mapping incoming URLs to IHttpHandler
classes . Sub-directories do not inherit these settings. Also
responsible for mapping incoming URLs to
IHttpHandlerFactory classes. Data represented in
<httphandlerfactories> sections are hierarchically inherited by
sub-directories.

<iisprocessmodel> Responsible for configuring the ASP.NET process model
settings on Internet Information Services (IIS) Web Server
Systems.

<authentication>
<identity>
<authorization>

Responsible for all security settings used by the ASP.NET
security HttpModule.

<sessionState> Responsible for configuring the session state HttpModule.

<trace> Responsible for configuring the ASP.NET trace service.

ASP.NET configuration settings are represented within these configuration
sections. For example, as you saw in Module 5, “Using Trace in Microsoft
ASP.NET Pages,” in Course 2063B, Introduction to Microsoft ASP.NET, you
can turn the trace feature on for an entire application in the <trace>
configuration section as follows:

<configuration>
 <system.web>
 <trace enabled="true"
 requestlimit="40" pageoutput="true"/>
 </system.web>
</configuration>

8 Module 7: Creating a Microsoft ASP.NET Web Application

Setting Up Cookie-less Sessions

n Session State Is Configured in the <sessionState>
Section of web.config

n <sessionState> Settings:

l cookieless

l timeout

n Setting Up Cookie-less Session

<sessionState cookieless="true“ /><sessionState cookieless="true“ />

l mode

l sqlConnectionString

*****************************illegal for non-trainer use********************** ********

Session state features can be configured by the <sessionState> section in the
web.config file. The <sessionState> section sets the behavior of the session
state throughout the application. The following table lists the settings of the
<sessionState> section and their descriptions.

Setting Description

cookieless="[true/false]" Indicates whether cookies should be used to store Session

IDs. The default value is False. When the value is False,
cookies are used.

mode="[off/InProc/
SQLServer/StateServer]"

Specifies where the session information is kept: in memory
on the Web server; in a Microsoft SQL Server™ database;
or in a separate process on the Web server or remote
computer.

sqlConnectionString Specifies the connection string for a SQL Server. For
example, "data source=127.0.0.1;user id=sa; password=".
This attribute is required when mode is set to sqlserver.

timeout="[number of
minutes]"

Specifies the number of minutes a session can be idle
before it is abandoned. The default value is 20 minutes.

For example, to double the default timeout of 20 minutes, the following can be
added to the web.config of an application:

<sessionstate timeout="40" />

Setting Up a Cookie-less Session
By default, ASP.NET uses cookies to identify requests within a single session.
If cookies are not available, or have been disabled by the user, a session can be
tracked by adding a session identifier to the URL. You can enable cookie -less
sessions as follows:

<sessionstate cookieless="true" />

 Module 7: Creating a Microsoft ASP.NET Web Application 9

Global Application File (Global.asax)

n Global.asax is Similar to Global.asa in ASP Applications

n Global.asax Supports More Than 15 Events

l As page is requested: BeginRequest,
AuthenticateRequest, AuthorizeRequest

l As page is returned: EndRequest

*****************************illegal for non-trainer use******************************

Similar to ASP, ASP.NET supports one global declarative file per application
for application events and state called global.asax. The global.asax file is
similar to ASP’s global.asa, but has numerous new events that are not supported
by global.asa.

In ASP.NET, global.asax can be used as an .asax file or as a component
that can be deployed in the application’s /bin directory.

Events
The event model provided by ASP.NET supports more than 15 events. This is
different from global.asa, which had only Application and Session OnStart and
OnEnd events.

For example, in ASP, if you wanted some code to run at the beginning of every
page, you would have needed to use an Include file at the top of every ASP
page. Using the ASP.NET global.asax file, you can simply declare the code in
the Application_BeginRequest event procedure, which is called at the
beginning of every request for the application.

Sub Application_BeginRequest(s As Object, e As EventArgs)
...
End Sub

Note

10 Module 7: Creating a Microsoft ASP.NET Web Application

ASP.NET still supports the Application and Session OnStart and OnEnd event
procedures, but Global.asax also includes events that are fired when a client
requests a page. The following table lists events that can be used when a page is
requested.

Event Name Description

Application_Error This event is fired when an un-handled

error occurs within an application.

Application_BeginRequest This event is fired whenever a new
request is received.

Application_AuthenticateRequest This event indicates that the request is
ready to be authenticated.

Application_AuthorizeRequest This event signals that the request is
ready to be authorized.

Application_ResolveRequestCache This event is used by the output cache
module to stop the processing of requests
that have been cached.

Application_AcquireRequestState This event signals that per-request state
should be obtained.

Application_PreRequestHandlerExecute This event signals that the request
handler is about to execute.

Global.asax also includes events that are fired when the requested page is sent
back to the client. The following table lists these events.

Event Name Description

Application_PostRequestHandlerExecute This event is first available after the

handler (such as an ASP.NET page), or
Web service has completed its work.

Application_ReleaseRequestState This event is called when the request
state should be stored, because the
application is finished with it.

Application_UpdateRequestCache This event signals that code processing
is complete and the file is ready to be
added to the ASP.NET cache.

Application_EndRequest This event is the last event called when
the application ends.

Application_PreRequestHeaderSent This event provides the opportunity to
add, remove, or update headers and the
response body.

 Module 7: Creating a Microsoft ASP.NET Web Application 11

Demonstration: Using Event Procedures in Global.asax

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to display events fired in the
global.asax file.

å To run this demonstration

1. Copy the file <install folder>\Democode\Mod07\global.asax to the folder
<install folder>.

This is the root of the 2063 virtual directory.

2. Open the file global.asax. There are Response.Write statements in the event
procedures.

3. View http://localhost/2063/DemoCode/Mod07/GlobalEvents.aspx in
Microsoft Internet Explorer.

4. Delete the global.asax file from the root of the 2063 virtual directory.

12 Module 7: Creating a Microsoft ASP.NET Web Application

Page Caching

n Output Caching

l Caches content generated from dynamic pages

l Page is compiled into IL and native code

l Native code is cached as Page class and is available to
serve for the next request

l Page class is updated when the source ASP.NET file is
changed or cache timeout happens

n Setting the Cache Timeout

<%@ OutputCache Duration= "900" %><%@ OutputCache Duration= "900" %>

*****************************illegal for non-trainer use******************************

Page caching allows you to cache dynamic content. When an ASP.NET page is
accessed for the first time, the page is compiled into Intermediate Language (IL)
and to native code. This native code is cached as Page class and is available to
serve the next request. This cached Page class is updated and rebuilt when the
source ASP.NET file is changed or the cache timeout is reached.

Setting the Cache Timeout Value
You can specify the cache timeout value by setting the output cache page
directive. For example, to cache an ASP.NET page for 15 minutes, add the
following @OutputCache directive to the .aspx page:

<%@OutputCache Duration="900" %>

The unit for time for the Duration attribute is seconds.

This cache option is very useful for pages that do not change often (or do not
change within a known time period).

Creating an output cache for an application should be your final task in
application development. Otherwise, when you debug your pages, instead of
getting new and modified pages, you may get old pages that are stored in the
output cache.

Note

 Module 7: Creating a Microsoft ASP.NET Web Application 13

u Sharing Information Between Pages

n Using ASP.NET Cache

n Using web.config Variables

n Demonstration: Using web.config Variables

n Using Session and Application Variables

n Demonstration: Using Session Variables

n Saving Session and Application Variables in a Database

n Discussion: Different Ways of Sharing Information

*****************************illegal for non-trainer use********** ********************

It is often necessary to share information between the pages of a Web
application. The information being shared can be either static or dynamic.

In this section, you will learn how to share both static and dynamic data
between pages of a Web application.

14 Module 7: Creating a Microsoft ASP.NET Web Application

Using ASP.NET Cache

n ASP.NET Cache:

l Stores objects and values for reuse in an application

n Placing Objects in ASP.NET Cache

n Retrieving Objects From ASP.NET Cache

Cache.Insert("mykey", myValue, _
Nothing, DateTime.Now.AddHours(1), _
TimeSpan.Zero)

Cache.Insert("mykey", myValue, _
Nothing, DateTime.Now.AddHours(1), _
TimeSpan.Zero)

myValue = Cache("mykey")
If myValue <> Nothing Then

DisplayData(myValue)
End If

myValue = Cache("mykey")
If myValue <> Nothing Then

DisplayData(myValue)
End If

*****************************illegal for non-trainer use******************************

The ASP.NET cache can be used to store objects and values that you reuse in
your application. ASP.NET provides a full-featured cache engine that can be
used by pages to store and retrieve arbitrary objects across HTTP requests. The
ASP.NET cache is private to each application and stores objects in memory.
The lifetime of the cache is equivalent to the lifetime of the application. This
means that, when the application is restarted, the cache is recreated.

The ASP.NET cache also provides a way to pass values between pages within
the same application. The ASP.NET cache methods implement automatic
locking; therefore, it is safe for objects to be accessed concurrently from more
than one page. The only drawback is that another page may change the values
that you place in the cache. It is not a per-user cache.

The cache provides a simple dictionary interface that allows you to insert
objects easily and retrieve them later. In the simplest case, placing an item in
the cache is exactly like adding an item to a dictionary:

Cache("mykey") = myValue

Retrieving this data is equally simple:

myValue = Cache("mykey")
If myValue <> Nothing Then
 DisplayData(myValue)
End If

You can also supply parameters when inserting an item into the cache by using
the Insert method.

 Module 7: Creating a Microsoft ASP.NET Web Application 15

Cache.Insert Syntax
Cache.Insert (key As String, _
 value As Object, _
 dependencies As CacheDependency, _
 absoluteExpiration As DateTime, _
 slidingExpiration As TimeSpan)

n key is the cache key used to reference the object.

n value is the object to be cached.

n dependencies should be set to Nothing.

n absoluteExpiration is the time at which the cached object expires and is
removed from the cache.

n slidingExpiration is the interval between the time the cached object was
last accessed and when that object is scheduled to expire. For example, if
slidingExpiration is set to 20 minutes, the object will expire and be
removed from the cache 20 minutes after the object was last accessed.

The following code shows how to use the ASP.NET cache to store a DataView
that is used in an ASPX page. The first time the page is requested, it reads data
from the database and then stores it in the ASP.NET cache. At every
subsequent request for the page, the DataView is retrieved from the cache,
eliminating a call to the database. This example uses absolute expiration to set
the cache to expire one hour from the first time it was accessed.

Dim dvMenuItems As DataView
dvMenuItems = Cache("dvMenuItems")

If (dvMenuItems = Nothing) Then
 Dim products As New Conference.ProductsDB
 dvMenuItems = products.GetProductCategories(). _
 Tables(0).DefaultView
 Cache.Insert("dvMenuItems", dvMenuItems, Nothing, _
 DateTime.Now.AddHours(1), TimeSpan.Zero)
End If

MyList.DataSource = dvMenuItems
MyList.DataBind()

To set the cache to use sliding expiration and expire one hour after the last time
it was accessed, apply the following parameters to the Insert method:

Cache.Insert("dvMenuItems", dvMenuItems, Nothing, _
 DateTime.Now, TimeSpan.FromHours(1))

16 Module 7: Creating a Microsoft ASP.NET Web Application

Using web.config Variables

n Store Application Variables in web.config

n Retrieve in an .aspx File

<configuration>
<appsettings>
<add key="pubs" value=

"server=localhost;uid=sa;pwd=;database=pubs"/>
</appsettings>
</configuration>

<configuration>
<appsettings>
<add key="pubs" value=

"server=localhost;uid=sa;pwd=;database=pubs"/>
</appsettings>

</configuration>

Dim appSetting As NameValueCollection
Dim strConn As String
appSetting = CType(Context.GetConfig _

("appsettings"), NameValueCollection)
strConn = appSetting("pubs").ToString()

Dim appSetting As NameValueCollection
Dim strConn As String
appSetting = CType(Context.GetConfig _

("appsettings"), NameValueCollection)
strConn = appSetting("pubs").ToString()

*****************************illegal for non-trainer use******************************

You can use the <appsettings> section of the web.config file as a repository for
application settings. In the <appsettings> section, you can create key/value pairs
for data that is commonly used throughout your application. This is very useful
because you can define all application configuration data in a central location.
For example, you can store a database connection string for an application in a
central location, instead of having it in each ASP.NET page.

The following web.config file creates two key/value pairs for the connection
strings for the databases used in the application:

<configuration>
 <appsettings>
 <add key="pubs"
 value="server=localhost;uid=sa;pwd=;database=pubs" />
 <add key="northwind"
 value="server=localhost;uid=sa;pwd=;database=northwind"
 />
 </appsettings>
</configuration>

Use the GetConfig method of the Context object to read the data from the
web.config file. You need to supply the name of the section and the name of the
key to retrieve. The GetConfig method returns a NameValueCollection
variable containing the key/value pairs defined in the requested section.

 Module 7: Creating a Microsoft ASP.NET Web Application 17

For example, the following sample code reads the value of the pubs key from
the <appSettings> section.

Dim appSetting As NameValueCollection
Dim strConn As String
appSetting = CType(Context.GetConfig("appsettings"), _
 NameValueCollection)
strConn = appSetting("pubs").ToString()

You can also use the GetConfig method of the HttpContext object to access
configuration information from a component. The syntax for this is:

appSetting = _
 CType(HttpContext.Current.GetConfig("appsettings"), _
 NameValueCollection)

18 Module 7: Creating a Microsoft ASP.NET Web Application

Demonstration: Using web.config Variables

*****************************illegal for non-trainer use******************************

In this demonstration, you will see how to create a constant in web.config and
use the constant from different ASP.NET pages.

å To run the demonstration

1. Create a new web.config file in the folder
<install folder>\DemoCode\Mod07.

2. Add the <configuration> tag with an <appsettings> section.

3. Add a new key to the <appsettings> section:

<configuration>
 <appSettings>
 <add key="intNumberInConfig" value="9" />
 </appSettings>
</configuration>

4. Open the file <install folder>\DemoCode\Mod07\UsingConfigVar1.aspx.

The intNumberInConfig value is retrieved and displayed in the
Page_Load event procedure.

5. View the UsingConfigVar1.aspx page in Internet Explorer.

The value of intNumberInConfig, 9, is displayed.

6. Click Next.

The UsingConfigVar2.aspx page opens and displays the same value.

 Module 7: Creating a Microsoft ASP.NET Web Application 19

Using Session and Application Variables

n Session Object Stores Information for a Particular User
Session

n Application Object Shares Information Among All Users
of a Web Application

Sub Session_Start(s As Object, e As EventArgs)
Session("BackColor") = "beige"
Session("ForeColor") = "black"

End Sub

Sub Session_Start(s As Object, e As EventArgs)
Session("BackColor") = "beige"
Session("ForeColor") = "black"

End Sub

Sub Application_Start(s As Object, e As EventArgs)
Application("NumberofVisitors") = 0

End Sub

Sub Application_Start(s As Object, e As EventArgs)
Application("NumberofVisitors") = 0

End Sub

*****************************illegal for non-trainer use******************************

You can use session and application variables to share information between
pages of an ASP.NET application.

You generally initialize session and application variables in the Start event
procedures of the Session and Application objects in the global.asax file.

Session Variables
You use the Session object to store information that is needed for a particular
user session. Va riables stored in the Session object will not be discarded when
the user goes between pages in the Web application. Instead, these variables
will persist for the entire user session. The following example illustrates how
session variables are used to store information about a particular user session.

<script language="VB" runat="server">
Sub Session_Start(S As Object, E As EventArgs)
 Session("BackColor") = "beige"
 Session("ForeColor") = "black"
 Session("FontName") = "verdana"
End Sub
</script>

20 Module 7: Creating a Microsoft ASP.NET Web Application

Application Variables
You can use the Application object to share information among all users of a
Web application. An Application object is created when the first user of the
application requests an .aspx file. It is destroyed when all users have exited the
application and the application is unloaded.

For example, you might store the total number of visitors to a Web site in an
application- level variable.

Sub Application_Start(s As Object, e As EventArgs)
 Application("NumberofVisitors") = 0
End Sub

A disadvantage of using session and application variables is that the
memory occupied by these variables will not be released until the value is either
removed or replaced. For example, keeping seldom-used 10-megabyte (MB)
recordsets in application-state permanently is not the best use of system
resources.

Reading Session and Application Variables
To use a session or application variable in an ASP.NET page, simply read the
value from the Session or Application object.

Session("BackColor")
Session("ForeColor")
Session("FontName")
Application("NumberofVisitors")

Note

 Module 7: Creating a Microsoft ASP.NET Web Application 21

Demonstration: Using Session Variables

*****************************illegal for non-trainer use******************************

In this demonstration, you will learn how to share the same session variable
through two different ASP.NET pages.

å To run the demonstration

1. Copy the file <install folder>\Democode\Mod07\global.session to the root
of the 2063 virtual folder and rename it global.asax.

2. Open the file global.asax and initialize a session variable named intNumber
to 3 by adding the following code to the Session_Start event procedure:

Session("intNumber")=3

3. Open the file <install folder>\Democode\Mod07\UsingSessionVar1.aspx.

The session variable is retrieved and displayed in the Page_Load event
procedure.

4. View the page
http://localhost/2063/democode/Mod07/UsingSessionVar1.aspx in
Internet Explorer.

The value of the session variable, 3, is displayed.

5. Click Next.

The UsingSessionVar2.aspx page opens, increments the session variable by
4, and displays the new value, 7.

6. Click Back to return to the UsingSessionVar1.aspx, which displays the new
value of the session variable.

22 Module 7: Creating a Microsoft ASP.NET Web Application

Saving Session and Application Variables in a Database

n Session State Can Be Stored in a Separate SQL Server
Database

n A Temporary Table Is Used for the Serialized Session
Data

n Advantages:

l State can be recovered even if an application crashes

l An application can be partitioned across multiple Web
farm machines

*****************************illegal for non-trainer use******************************

In ASP.NET, an application can store session state in a separate SQL Server
database. A temporary table is used for the serialized session data. The table
can be accessed by a combination of stored procedures and managed data
access components for SQL Server.

By cleanly separating the storage of session data from the application usage of
it, ASP.NET provides advantages that did not exist in ASP:

n Ability to recover from application crashes

Because all state is stored externally from an individual worker process, it
will not be lost if the process crashes or is forcibly restarted.

n Ability to partition an application across multiple Web farm servers

Because all state is stored externally from worker processes, you can
partition an application across multiple worker processes running on
multiple servers. The model for communicating state between a worker
process and a state service running on the same server is almost identical to
models in which the state service is located on a completely different
machine.

To configure your application to store session state in a separate database, set
the mode attribute of the sessionState section to SQLServer and set the
sqlConnectionString attribute to the connection string for the server.

For more information on saving session information in a database, see “Session
State” in the Microsoft .NET Framework software development kit (SDK)
documentation.

 Module 7: Creating a Microsoft ASP.NET Web Application 23

Discussion: Different Ways of Sharing Information

*****************************illegal for non-trainer use**************** **************

24 Module 7: Creating a Microsoft ASP.NET Web Application

u Securing an ASP.NET Application

n What Is Authentication?

n Forms Authentication Architecture

n Setting Up Security in web.config

n Creating a Login Form

n Demonstration: Setting Up Security in web.config

*****************************illegal for non-trainer use******************************

Securing Web sites is a critical is sue for Web developers. A secure system
requires careful planning, and Web site administrators and programmers must
have a clear understanding of the options for securing a site. Security, in the
context of an ASP.NET application, involves performing three fundamental
functions for all requests: authentication, authorization, and impersonation.

Authentication is the process verifying that the user requesting a page is
actually that user. To authenticate a request, you accept credentials from a user
and validate those credentials against some authority.

After you have authenticated the user, the authorization process determines
whether that user should be granted access to a given resource.

Another important feature of server applications is the ability to control the
identity under which server application code is executed. When a server
application executes code with the identity of the requesting entity, this is
known as impersonation.

In this section, you will learn about securing an ASP.NET application by
implementing authentication and authorization in web.config.

 Module 7: Creating a Microsoft ASP.NET Web Application 25

What Is Authentication?

n Authentication

l Accept credentials from a user

l Validate the credentials

n Types of ASP.NET Authentication

l Windows authentication

l Passport authentication

l Forms authentication

*****************************illegal for non-trainer use******************************

Authentication is the process of accepting credentials from a user and validating
those credentials against some authority. If the credentials are valid, you have
an authenticated identity.

Authentication in ASP.NET is implemented through authentication providers.
ASP.NET authentication providers are the code modules that contain the code
necessary to authenticate the requestor ’s credentials.

The first version of ASP.NET will ship with support for the following
authentication providers:

n Windows authentication

This method is used in conjunction with the IIS authentication.
Authentication is performed by IIS in one of three ways: Basic, Digest, or
Integrated Windows Authentication. The advantage of using this
authentication type is that it requires minimum coding. Also, because it is
Microsoft Windows NT ® authentication, there is no additional cost to
implement this type of security. However, because the resources for
authentication are not embedded in the ASP.NET application, using this
method involves additional effort when deploying the application.

For more information on Windows authentication, see the Microsoft .NET
Framework SDK documentation.

n Passport authentication

Passport authentication is a centralized authentication service provided by
Microsoft that offers a single sign-in and core profile services for member
sites. It is a Web service and an integral part of the Microsoft .NET
Framework.

For more information on Passport authentication, go to:
http://www.passport.com/Business

26 Module 7: Creating a Microsoft ASP.NET Web Application

n Forms authentication

Forms authentication refers to a system where unauthenticated requests are
redirected to a Hypertext Markup Language (HTML) form (by using HTTP
client-side redirection). The user provides credentials and submits the form.
If the application validates credentials on the form, the system issues a
cookie to the user. Subsequent requests are issued with the cookie in the
request headers; therefore, they are authenticated.

 Module 7: Creating a Microsoft ASP.NET Web Application 27

Forms Authentication Architecture

Client requests page

Authorized

ASP.NET
Authentication

Not
Authenticated Authenticated

Login Page
(Users enter
their credentials)

Authenticated

Cookie

Authorized

Not
Authenticated

Access Denied

Requested
Page

ûû

ûû

*****************************illegal for non-trainer use******************************

The most commonly used authentication type in ASP.NET applications is
forms authentication.

A request for a page protected by forms authentication must still go through IIS
first. Therefore, you must set IIS authentication to Anonymous Access. This
allows all requests to get to ASP.NET before being authenticated.

For more information on setting up Anonymous Access, see the Security
section in the IIS documentation.

The following is the set of events that take place during forms authentication:

1. A client generates a request for a protected page.

2. IIS receives the request, and passes it to the ASP.NET application. Because
the authentication mode is set to Anonymous Access, IIS authentication is
not used.

3. ASP.NET checks to see if a valid authentication cookie is attached to the
request. If it is, this means that the user’s credentials have already been
confirmed, and the request is tested for authorization. The authorization test
is performed by ASP.NET and is accomplished by comparing the
credentials contained in the request’s authorization cookie to the
authorization settings in the application’s configuration file (web.config). If
the user is authorized, access is granted to the protected page.

4. If there is no cookie attached to the request, ASP.NET redirects the request
to a login page (the path of which resides in the application’s configuration
file), where the user enters the required credentials, usually a name and
password.

Tip

28 Module 7: Creating a Microsoft ASP.NET Web Application

5. The application code on the login page checks the credentials to confirm
their authenticity and, if authenticated, attaches a cookie containing the
credentials to the request. If authentication fails, the request is returned with
an “Access Denied” message.

6. If the user is authenticated, ASP.NET checks authorization as in step 3, and
can either allow access to the originally requested, protected page or redirect
the request to some other page, depending on the design of the application.
Alternatively, it can direct the request to some custom form of authorization
where the credentials are tested for authorization to the protected page.
Usually if authorization fails, the request is returned with an “Access
denied” message.

 Module 7: Creating a Microsoft ASP.NET Web Application 29

Setting Up Security in web.config

n Setting Up Authentication

n Setting Up Authorization

<system.web>
<authentication mode="Forms">
<forms name="name" loginurl="login.aspx"/>

</authentication>
</system.web>

<system.web>
<authentication mode="Forms">

<forms name="name" loginurl="login.aspx"/>
</authentication>

</system.web>

<location path="ShoppingCart.aspx">
<system.web>

<authorization>
<deny users="?"/>
<allow users="Mary"/>

</authorization>
</system.web>

</location>

<location path="ShoppingCart.aspx">
<system.web>

<authorization>
<deny users="?"/>
<allow users="Mary"/>

</authorization>
</system.web>

</location>

*****************************illegal for non-trainer use******************************

Security for ASP.NET applications is set up in the application’s web.config file.
The security settings in web.config are included in the <authentication>,
<authorization>, and <identity> sections.

You can set up authentication only in the web.config file in the root of
your Web application.

Setting Up Authentication
Begin by setting the authentication method for the application in an
<authentication> subsection of the <system.web> section, as shown in the
following example.

<configuration>
 <system.web>
 <authentication mode="authmode">
 </authentication>
 </system.web>
</configuration>

As mentioned earlier in this module, ASP.NET supports three types of
authentication: Windows authentication, Forms authentication, and Passport
authentication. You can set the authentication mode for an application by
setting the mode attribute in the <authentication> tag to "None", "Windows",
"Passport", or "Forms".

Note

30 Module 7: Creating a Microsoft ASP.NET Web Application

If you set the authentication mode to “Forms”, you need to add a <forms>
element to the <authentication> section, as shown in the following example:

<system.web>
 <authentication mode="Forms">
 <forms name=".namesuffix" loginurl="login.aspx" />
 </authentication>
</system.web>

In the <forms> section, you configure settings of the cookie. Set the name
attribute to the suffix to be used for the cookies and the loginUrl attribute to the
URL of the page to which un-authenticated requests are redirected.

Setting Up Authorization
After specifying the authentication mode, you need to either mark the entire
Web application as needing authorization or specify which pages are secure and
require authorization.

Securing an Entire Application
To mark the entire application as secure, create an <authorization> section in
the <authentication> section, as illustrated in the following code example:

<system.web>
 <authentication mode="Forms">
 <forms name=".aspxauth"
 loginurl="login.aspx" />
 <authorization>
 </authorization>
 </authentication>
</system.web >

 Module 7: Creating a Microsoft ASP.NET Web Application 31

Securing Specific Pages
To mark only specific pages as secure, create a <location> section with
<sys tem.web> and <authorization> sub-sections for each secure page in your
Web application:

<location path="ShoppingCart.aspx">
 <system.web>
 <authorization>
 </authorization>
 </system.web>
</location>

Any configuration settings contained in the <location> section will be directed
at the file or directory indicated in the path attribute. There can be multiple
<location> sections in the <configuration> section.

In the <system.web> section, you create an <authorization> subsection to
specify what type of authorization will be enforced. Create <allow> or <deny>
tags to allow or deny users access to a page. Within these tags, "?" indicates
anonymous users, whereas "*" means all users. For example, the following
code denies access to all anonymous users.

<authorization>
 <deny users="?"/>
</authorization>

The following code allows the user “Mary” access to a page:

<authorization>
 <allow users="Mary"/>
</authorization>

The following example denies all anonymous users access to the
ShoppingCart.aspx page.

<location path="ShoppingCart.aspx">
 <system.web>
 <authorization>
 <deny users="?"/>
 </authorization>
 </system.web>
</location>

For more information about setting up authorization in web.config, see
“ASP.NET Authorization” in the Microsoft .NET Framework SDK
documentation.

32 Module 7: Creating a Microsoft ASP.NET Web Application

Creating a Login Form

n Login Page Verifies and Checks the Credentials of a User

l Login page validates user credentials and redirects if valid

n Reading User Credentials from Cookie

l User.Identity.Name returns the value saved by
CookieAuthentication.RedirectFromLoginPage

Sub cmdLogin_Click(s As Object, e As EventArgs)
If (login(txtEmail.Value, txtPassword.Value))

FormsAuthentication.RedirectFromLoginPage _
(txtEmail.Value, False)

End If
End Sub

Sub cmdLogin_Click(s As Object, e As EventArgs)
If (login(txtEmail.Value, txtPassword.Value))

FormsAuthentication.RedirectFromLoginPage _
(txtEmail.Value, False)

End If
End Sub

*****************************illegal for non-trainer use******************************

During authentication, all requests are redirected to the login page specified in
the loginurl attribute of the <cookie> tag. The login page verifies and checks
the credentials of a user.

How Does a Login Page Work?
If the authentication mode is set to "Forms", ASP.NET looks for a cookie
attached to a request for a secure page. If it does not find one, it redirects the
request to a specified login page.

On the login page, the user enters the required credentials. The page checks the
entered credentials either through application-specific code or by calling
FormsAuthentication.Authenticate. If the credentials are valid, a cookie is
generated and the user is redirected to the originally requested page by calling
FormsAuthentication.RedirectFromLoginPage . However, if the credentials
are not valid, the user stays on the login page and is given a message that
indicates that the login credentials are invalid.

The RedirectFromLoginPage method takes two parameters, userName,
which specifies the name of the user for forms authentication purposes, and
createPersistentCookie. If the value of createPersistentCookie is True , a
cookie is created on the user’s machine.

 Module 7: Creating a Microsoft ASP.NET Web Application 33

The following table lists all the methods of the FormsAuthentication object,
which can be used in the authentication process.

Method Function

Authenticate Given the supplied credentials, this method attempts to

validate the credentials against those contained in the
configured credential store.

GetAuthCookie Creates an authentication cookie for a given user name.
This does not set the cookie as part of the outgoing
response, so that an application can have more control over
how the cookie is issued.

GetRedirectUrl Returns the redirect URL for the original request that
caused the redirect to the login page.

RedirectFromLoginPage Redirects authenticated users back to the original URL they
requested.

SetAuthCookie Creates an authentication ticket for the given userName and
attaches it to the cookies collection of the outgoing
response. It does not perform a redirect.

SignOut Given an authenticated user, calling SignOut removes the
authentication ticket by doing a SetCookie with an empty
value. This removes either durable or session cookies.

Creating a Login Page
A login page is simply an ASP.NET page with an HTML form, a Submit
button, and a Click event procedure for the Submit button.

The following is an example of a form on a login page:

<form runat=server>
 Email:<input id="txtEmail" type="text" runat=server/>

 Password<input id="txtPassword" type="password"
 runat="server"/>

 <asp:button text="Login" OnClick="Login_Click"
 runat="server" />
 <asp:label id="lblMsg" runat="server"/>
</form>

34 Module 7: Creating a Microsoft ASP.NET Web Application

In the Click event procedure of the Submit button, you validate the information
entered in the form, then call FormsAuthentication.RedirectFromLoginPage
if it is valid. The RedirectFromLoginPage method issues the cookie and then
redirects the user to the originally requested page. The following sample code
uses a custom function named Login to validate the username and password,
and then calls RedirectFromLoginPage if they are valid:

<script language="VB" runat=server>
Sub cmdLogin_Click(Sender As Object, E As EventArgs)
 Dim strCustomerId As String
 'Validate User Credentials
 strCustomerId = Login(txtEmail.Value, txtPassword.Value)

 If (strCustomerId <> "") Then
 FormsAuthentication.RedirectFromLoginPage _
 (strCustomerId, False)
 Else
 lblMsg.Text = "Invalid Credentials: Please try again"
 End If
End Sub
</script>

Reading Credentials from Cookie
After a user has been authenticated, you can obtain the user name of the
authenticated user programmatically by using the User.Identity.Name property.
This is useful to build an application that uses the user’s name as a key to save
information in a database table or directory resource.

Using Credentials from web.config
If you do not want to write your own validation function, you can create a list
of users in the web.config file and use the FormsAuthentication.Authenticate
method to validate a username and password pair.

The following web.config file creates two valid users for an application:

<system.web>
 <authentication mode="Forms">
 <forms loginurl="democode/Mod07/LoginDemo.aspx">
 <credentials passwordFormat="Clear">
 <user name="ruth" password="password"/>
 <user name="bob" password="password"/>
 </credentials>
 </forms>
 </authentication>
</system.web>

 Module 7: Creating a Microsoft ASP.NET Web Application 35

The following event procedure on the login page calls the Authenticate method
to authenticate only those users from the web.config file:

Sub cmdLogin_Click(S As Object, E As EventArgs)
 If (FormsAuthentication.Authenticate _
 (txtEmail.value, txtPassword.Value))
 FormsAuthentication.RedirectFromLoginPage _
 (txtEmail.Value, False)
 Else
 lblMsg.Text = "Invalid Credentials: Please try again"
 End If
End Sub

36 Module 7: Creating a Microsoft ASP.NET Web Application

Demonstration: Setting Up Security in web.config

*****************************illegal for non-trainer use******************************

In this demonstration, you will learn how to set up authentication in web.config
and how to create an authentication cookie in a login file.

å To run the demonstration

1. Copy the files <install folder>\Democode\Mod07\config.demo,
LoginDemo.aspx, SecurePageDemo1.aspx, SecurePageDemo2.aspx,
UsingSessionVar1.aspx, and UsingSessionVar2.aspx to the root of the 2063
virtual directory.

2. Rename the file config.demo to web.config.

3. Edit the file web.config.

There is an <authentication> section that redirects all unauthenticated
requests to the LoginDemo.aspx page.

Two pages have been set up as secure pages.

4. Edit the file <install folder>\LoginDemo.aspx.

The cmdLogin_Click event procedure validates the user name and
password and calls RedirectFromLoginPage if they are valid.

5. View the unsecured page http://localhost/2063/Us ingSessionVar1.aspx page
in Internet Explorer.

6. View the secure page http://localhost/2063/SecurePageDemo1.aspx page in
Internet Explorer.

You are redirected to the LoginDemo.aspx page.

 Module 7: Creating a Microsoft ASP.NET Web Application 37

7. Type an e-mail name and an invalid password (“password” is the only valid
password) and click Sign In Now.

It will fail because the password is invalid.

8. Type password for the password field and click Sign In Now again. You
will be redirected to the SecurePageDemo1.aspx page.

9. View the secure page http://localhost/2063/SecurePageDemo2.aspx in
Internet Explorer.

38 Module 7: Creating a Microsoft ASP.NET Web Application

Lab 7: Creating an ASP.NET Web Application

*****************************illegal for non-trainer use******************************

Objectives
After completing this lab, you will be able to:

n Use forms authentication to authenticate and authorize users when accessing
secured pages.

n Use the ASP.NET cache to save data for the _menu.aspx page.

n Maintain state of an application by saving data in a database.

Prerequisite
Before working on this lab, you must know how to use a component.

Lab Setup
There are starter and solution files associated with this lab. The starter files are
in the folder <install folder>\Labs\Lab07\Starter and the solution files for this
lab are in the folder <install folder>\Labs\Lab07\Solution.

 Module 7: Creating a Microsoft ASP.NET Web Application 39

Scenario
In Exercise 1, you will use the ASP.NET cache to store a DataSet that is used
by the _menu.aspx page.

When users want to sign into the conference system, they need to enter a valid
e-mail name and corresponding password. This is done on the login.aspx page
or through register.aspx in the case of a new user. In this lab, you will first
complete the login.aspx and register.aspx pages to attempt to authenticate a user
through the use of a cookie (forms authentication). Exercises 2 and 4 involve
variations on forms authentication of this user. Exercise 3 illustrates how to
retrieve the customer ID of the authenticated user from any of the pages of your
application. You can use this ID to store customer information or products
selected by the customer in the database.

Estimated time to complete this lab: 60 minutes

40 Module 7: Creating a Microsoft ASP.NET Web Application

Exercise 1
Storing Data

In this exercise, you will programmatically cache the DataView used by the
DataList control in the file _Menu.ascx. You will then look at web.config to
see how the connection string for the Conf database is stored.

å To read the DataView from the cache

1. Open the file _Menu.ascx file in the folder InetPub\wwwRoot\ASPNET.

2. At the beginning of the Page_Load event procedure, immediately after the
dvMenuItems variable is declared, add code to read the contents of the
dvMenuItems item from the cache and save it in the dvMenuItems variable.

Your code should look like the following:

dvMenuItems = Cache("dvMenuItems")

3. Test the contents of dvMenuItems. If the content is empty:

a. Create the DataView from the database by using the code that is already
in the event procedure.

b. Store the DataView in the cache. Create the cache such that it will be
stored for one hour.

Your code should look like the following:

If (dvMenuItems Is Nothing) Then
 Response.Write ("Getting items from the database.<P>")
 Dim products As New Conference.ProductsDB

 dvMenuItems = products.GetProductCategories(). _
 Tables(0).DefaultView
 Cache.Insert("dvMenuItems", dvMenuItems, Nothing, _
 DateTime.Now.AddHours(1), TimeSpan.Zero)
Else
 Response.Write ("Got items from the cache.<P>")
End If

å To save and test your work

1. Save your changes to _Menu.ascx.

2. By using Internet Explorer, go to the home page of the ASPNET Web site
by viewing http://localhost/ASPNET/default.aspx

The items are retrieved from the database.
3. Refresh the page in Internet Explorer.

The items are retrieved from the cache.

 Module 7: Creating a Microsoft ASP.NET Web Application 41

å To investigate web.config application settings

As you can see in the _Menu.ascx file, the GetProductCategories() method is
used to get the items for the menu from the database. This method is in the
ProductsDB.vb component.

1. Open the ProductsDB.vb file from the Components folder and locate the
GetProductCategories method.

The SQL connection string is obtained from
ConferenceDB.ConnectionString.

2. Open the ConferenceDB.vb file from the Components folder and locate the
ConnectionString property.

The connection string is read from the DSN key in the <appSettings>
section of the web.config file.

3. Open the web.config file in the ASPNET Web site and locate the DSN key
in the <appSettings> section.

42 Module 7: Creating a Microsoft ASP.NET Web Application

Exercise 2
Using Forms Authentication

In this exercise, you will validate the user’s name and password from the
login.aspx page with information stored in the database. If the information is
valid, you will transfer the contents of the temporary shopping cart into a
permanent shopping cart for the user. Next, you will create an authentication
cookie that will be used throughout the Web site.

You will use two different classes in the conference component:
Conference.ShoppingCartDB manipulates the shopping cart and
Conference.CustomersDB accesses the customer information in the Conf
database.

The source code for these classes can be found in the
\Components\ShoppingCartDB.vb and \Components\CustomerDB.vb files in
the ASPNET Web site.

You will call the following methods:

n Conference.ShoppingCartDB.GetShoppingCartID() returns a string with
the ID of the current shopping cart.

Public Function GetShoppingCartId() As String

n Conference.ShoppingCartDB.MigrateCart() migrates the items from one
shopping cart (temporary) to another (permanent). The permanent shopping
cart uses the customer's ID as the shopping cart ID.

Public Sub Procedure MigrateCart(oldCartId As String,
NewCartId As String)

n Conference.CustomersDB.Login() validates an e-mail name and password
pair against credentials stored in the customers table of the database. If the
e-mail name and password pair is valid, the method returns the customer ID.
In the case of an invalid e-mail name and password pair, this method returns
an empty string.

Public Function Login(email As String, password As String)
As String

Note

 Module 7: Creating a Microsoft ASP.NET Web Application 43

å To connect to a data source

1. Open the file Login.aspx in the folder InetPub\wwwRoot\ASPNET.

2. In the cmdLogin_Click event procedure, declare the variables as shown in
the following table.

Variable name Data Type

shoppingCart New Conference.ShoppingCartDB

strTempCartID String

accountSystem New Conference.CustomersDB

strCustomerID String

3. Call the Login method of the accountSystem object and store the returned
customer ID in the variable strCustomerID. Pass the e-mail name and
password to the Login method:

Your code should look like the following:

strCustomerId = _
 accountSystem.Login(txtEmail.Value, txtPassword.Value)

4. If the returned CustomerID is empty, this indicates that the user is not
authorized to log on. Output a "login failed" message in the spnInfo label.

5. If the returned CustomerID is not empty, the user is authorized to log on and
you need to migrate the contents of the temporary shopping cart to a
permanent one by performing the following operations:

a. Get the shopping cart ID by using the GetShoppingCartId method of
the shoppingCart object and store it in the strTempCartID variable.

b. Migrate any existing temporary shopping cart items to the permanent
shopping cart by using the MigrateCart method of the shoppingCart
object. Pass the temporary shopping cart ID and the customer ID to the
method.

c. Create a non-persistent cookie and direct the user back to the Login page
by calling the RedirectFromLoginPage method of the
FormsAuthentication object.

Your code should look like the following:

If (strCustomerId <> "") Then
 ' Get the old Shopping Cart ID
 strTempCartID = shoppingCart.GetShoppingCartId()

 ' Migrate existing shopping cart into
 'permanent shopping cart
 shoppingCart.MigrateCart(strTempCartID, strCustomerId)

 ' Redirect browser back to originating page
 FormsAuthentication.RedirectFromLoginPage(_
 strCustomerId, false)
Else ' Login failed
 spnInfo.innerHTML = "Login Failed"
End If

44 Module 7: Creating a Microsoft ASP.NET Web Application

å To save and test your work

1. Save your changes to login.aspx.

2. By using Internet Explorer, go to the Login page of the ASPNET Web site
by viewing http://localhost/ASPNET/Login.aspx

3. Fill out the e-mail field with someone@microsoft.com with a blank
password and click Sign In Now.

You will get the Login Failed message.

4. Fill in the password field with the value password and click Sign In Now.

You will be redirected to the default page of the ASPNET Web site,
default.aspx.

The e-mail name and password pair
someone@microsoft.com/password is already in the database.

Note

 Module 7: Creating a Microsoft ASP.NET Web Application 45

Exercise 3
Retrieving Cookie Data in ASP.NET Pages

In this exercise, you will add code to the GetID.aspx page that reads the
customer ID (also known as Cart ID) from the authentication cookie. If the
customer has not been authenticated, you will use a temporary ID. The
GetID.aspx page is not directly linked to the ASPNET Web site. Instead, it
simply reads the customer ID or temporary ID and displays it.

å To read the customer ID

1. Add the GetID.aspx page to the ASPNET Web site.

a. On the Project menu, click Add Existing Item.

b. In the Add Existing Item dialog box, navigate to the
<install folder>\Labs\Lab07\Starter folder.

c. Select the GetID.aspx file, and then click Open.

You will be asked if you want to create a new class file. Click No.

2. Open the GetID.aspx file.

3. Locate the comment:

' TO DO: Read the customer ID

4. Test the value of User.Identity.Name.

5. If the string is not empty (""), output the value of User.Identity.Name using
Response.write.

Note

46 Module 7: Creating a Microsoft ASP.NET Web Application

6. If the string is empty, the user has not previously been authenticated.

a. Read the value of the Conference_CartID cookie. This cookie is issued
the first time a non-authentic ated user accesses the shopping cart.

b. If the cookie is not empty, output the value of the Conference_CartID
cookie.

c. If the cookie is empty, output a message that says that the customer is
not authenticated, and has not yet accessed the shopping cart.

Your code should look like the following:

If User.Identity.Name <> "" Then
 Response.write("Customer ID from authentication " & _
 "cookie:
")
 Response.write(User.Identity.Name)
Else
 If Request.Cookies("Conference_CartID") Is Nothing Then
 Response.write("Customer not authenticated " & _
 "and has not accessed the shopping cart yet")

 Else
 Response.write("Temporary Customer ID stored " & _
 "in a cookie:
")
 Response.write(_
 Request.Cookies("Conference_CartID").Value)

 End If
End If

å To save and test your work

1. Save your changes to GetID.aspx.

2. Start a new instance of Internet Explorer and go to the GetID.aspx page by
viewing http://localhost/ASPNET/GetID.aspx

You should be able to see the message stating that the customer is not
authenticated and has not yet accessed the shopping cart.

3. Click Go to Home Page .

4. Select an item and add it to the shopping cart.

5. Go back to the GetID.aspx page and click Refresh.

You should see the message that a temporary customer ID is stored in a
cookie, as well as the value of the temporary ID.

6. Click Go to Login Page.

7. Enter a valid e-mail name and password, and then click Sign In Now. For
this lab, use someone@microsoft.com for the user name and password for
the password.

8. Go back to the GetID.aspx page, and click Refresh.

You should see the message that the customer ID is from an authentication
cookie and the value of the Customer ID.

 Module 7: Creating a Microsoft ASP.NET Web Application 47

å To view the GetShoppingCartId method

1. Open the ShoppingCartDB.vb file in the Components folder of the ASPNET
Web site.

2. Locate the GetShoppingCartID method.

This method returns an ID to be used for adding items to a shopping cart in
the database. The method returns the value of the authenticated user, the
value stored in the Conference_CartID cookie, or a new temporary ID
created by calling Guid.NewGuid.

48 Module 7: Creating a Microsoft ASP.NET Web Application

Exercise 4
Using Forms Authentication in Register.aspx

In this exercise, you will add a new customer to the database. Next, you will
create an authentication cookie for the new customer. Afterward, you will
transfer the content of the temporary shopping cart into the new customer’s
permanent shopping cart and redirect to the shopping cart page
(ShoppingCart.aspx).

As you did in the previous exercise, you will call two different components: the
first, named Conference.ShoppingCartDB, is used to manipulate the shopping
cart; the second, Conference.CustomersDB is used to access to the customer
information.

You will need to call the Conference.CustomersDB.AddCustomer() method,
which inserts a new customer record into the customers database. This method
returns a unique Customer ID.

Public Function AddCustomer(fullName As String, email As
String, password As String) As String

å To connect to a data source
1. Open the file Register.aspx in the folder InetPub\wwwRoot\ASPNET.

2. Delete the following ins truction from the cmdValidation_Click event
procedure:

Response.Redirect("validOK.aspx")

3. In the cmdValidation_Click event procedure, declare the following
variables:

Variable Name Data Type

shoppingCart New Conference.ShoppingCartDB

strTempCartID String

accountSystem New Conference.CustomersDB

strCustomerID String

4. Call the GetShoppingCartId method of the shoppingCart object to read
the current shopping cart ID. Save the value in the strTempCartID variable.

5. Create a new customer in the Customers table of the database by calling the
AddCustomer method of the accountSystem object. Save the created
customer ID in the strCustomerID variable.

Your code should look like the following:

strCustomerId = _
 accountSystem.AddCustomer(txtFullName.Text, _
 txtEmail.Text, txtPassword.Text)

Use the Text property of these controls because they are Web
controls.

Note

 Module 7: Creating a Microsoft ASP.NET Web Application 49

6. If the returned CustomerID is not empty, the user was added to the database
and you need to migrate the items in the temporary shopping cart to the
permanent shopping cart:

a. Authenticate a non-persistent cookie by passing the strCustomerID
parameter to the SetAuthCookie method.

b. Get the shopping cart ID by using the GetShoppingCartId method of
the shoppingCart object and store it in the strTempCartID variable.

c. Migrate any existing shopping cart items to the permanent shopping cart
by using the MigrateCart method of the shoppingCart object. Pass the
temporary cart ID and the customer ID to the MigrateCart method.

d. Redirect the user to the shoppingCart.aspx page he or she came from by
calling the Navigate method of the Page object.

Your code should look like the following:

If (strCustomerId <> "") Then
 ' Set the user's authentication name to the customerId
 FormsAuthentication.SetAuthCookie(strCustomerId, False)

 ' Migrate any existing shopping cart items into
 ' the permanent shopping cart
 shoppingCart.MigrateCart(strTempCartID, strCustomerId)

 ' Redirect browser back to shopping cart page
 Response.Redirect("ShoppingCart.aspx")
End If

å To save and test your work

1. Save your changes to Register.aspx.

2. Using Internet Explorer, go to the register page of the ASPNET Web site by
viewing http://localhost/ASPNET/register.aspx

3. Create a new user with your full name, your e-mail address, and a password,
and then click Submit.

4. To verify whether this new user was successfully registered, open the Login
page by viewing http://localhost/ASPNET/login.aspx. Enter the e-mail
address and password of the new user you just registered, and then click
Sign In Now!

You should receive validation and be redirected to the home page of the
ASPNET Web site, default.aspx.

50 Module 7: Creating a Microsoft ASP.NET Web Application

Review

n Requirements of a Web Application

n What Is New in ASP.NET?

n Sharing Information Between Pages

n Securing an ASP.NET Application

*****************************illegal for non-trainer use******************************

1. How do you set up a Web application to use cookie-less sessions?

2. Where is global.asax file of an application located?

3. Where is the web.config file for an application located?

4. In web.config, all configuration information must reside under what tags?

 Module 7: Creating a Microsoft ASP.NET Web Application 51

5. How do you specify which authentication method will be used by an
ASP.NET application?

6. What is the difference between output cache and ASP.NET cache?

7. How can you secure an entire application?

THIS PAGE INTENTIONALLY LEFT BLANK

