

Contents

Overview 1

Deriving Classes 2
Implementing Methods 10

Using Sealed Classes 26

Using Interfaces 28

Using Abstract Classes 42

Lab 10: Using Inheritance to Implement
an Interface 53

Review 71

Module 10: Inheritance
in C#

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual #, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 10: Inheritance in C# 1

Overview

n Deriving Classes

n Implementing Methods

n Using Sealed Classes

n Using Interfaces

n Using Abstract Classes

Inheritance, in an object-oriented system, is the ability of an object to inherit
data and functionality from its parent object. Therefore, a child object can
substitute for the parent object. Also, by using inheritance, you can create new
classes from existing classes instead of starting at the beginning and creating
them new. You can then write new code to add the features required in the new
class. The parent class on which the new class is based is know n as a base class,
and the child class is known as a derived class.

When you create a derived class, it is important to remember that a derived
class can substitute for the base class type. Therefore, inheritance is a type-
classification mechanism in addit ion to a code-reuse mechanism, and the
former is more important than the latter.

In this module, you will learn how to derive a class from a base class. You will
also learn how to implement methods in a derived class by defining them as
virtual methods in the base class and overriding or hiding them in the derived
class, as required. You will learn how to seal a class so that it cannot be derived
from. You will also learn how to implement interfaces and abstract classes,
which define the terms of a contract to which derived classes must adhere.

After completing this module, you will be able to:

n Derive a new class from a base class, and call members and constructors of
the base class from the derived class.

n Declare methods as virtual and override or hide them as required.

n Seal a class so that it cannot be derived from.

n Implement interfaces by using both the implicit as well as the explicit
methods.

n Describe the use of abstract classes and their implementation of interfaces.

2 Module 10: Inheritance in C#

u Deriving Classes

n Extending Base Classes

n Accessing Base Class Members

n Calling Base Class Constructors

You can only derive a class from a base class if the base class was designed to
enable inheritance. This is because objects must have the proper structure or
inheritance cannot work effectively. A base class that is designed for
inheritance should make this fact clear. If a new class is derived from a base
class that is not designed appropriately, then the base class might change at
some later time, and this would make the derived class inoperable.

In this section, you will learn how to derive a class from a base class, and how
to access the members and constructors of the base class from the derived class.

 Module 10: Inheritance in C# 3

Extending Base Classes

n Syntax for Deriving a Class from a Base Class

n A Derived Class Inherits Most Elements of Its Base Class

n A Derived Class Cannot Be More Accessible Than Its
Base Class

class Token
{

...
}
class CommentToken: Token
{

...
}

class Token
{

...
}
class CommentToken: Token
{

...
}

CommentToken
« concrete »

CommentToken
« concrete »

Token
« concrete »

Token
« concrete »Derived classDerived classDerived class Base classBase classBase class

ColonColonColon

Deriving a class from a base class is also known as extending the base class. A
C# class can extend at most one class.

Syntax for Deriving a Class
To specify that one class is derived from another, you use the following syntax:

class Derived: Base
{
 ...
}

The elements of this syntax are labeled on the slide. When you declare a
derived class, the base class is specified after a colon. The white space around
the colon is not significant. The recommended style for using this syntax is to
include no spaces before the colon and a single space after it.

Derived Class Inheritance
A derived class inherits everything from its base class except for the base class
constructors and destructors. It usually adds its own members to those that it
inherits from its base class. Public members of the base class are implicitly
public members of the derived class. Private members of the base class, though
inherited by the derived class, are accessible only to the members of the base
class.

4 Module 10: Inheritance in C#

Accessibility of a Derived Class
A derived class cannot be more accessible than its base class. For example, it is
not possible to derive a public class from a private class, as is shown in the
following code:

class Example
{
 private class NestedBase { }
 public class NestedDerived: NestedBase { } // Error
}

The C# syntax for deriving one class from another is also allowed in C++,
where it implicitly specifies a private inheritance relationship between the
derived and base classes. C# has no private inheritance; all inheritance is public.

 Module 10: Inheritance in C# 5

Accessing Base Class Members

n Inherited Protected Members Are Implicitly Protected in the Derived
Class

n Methods of a Derived Class Can Access Only Their Inherited Protected
Members

n Protected Access Modifiers Cannot Be Used in a Struct

class Token
{ ... class Outside

protected string name; {
} void Fails(Token t)
class CommentToken: Token {
{

public string Name() t.name
{ ...

return name; }
} }

}

class Token
{ ... class Outside

protected string name; {
} void Fails(Token t)
class CommentToken: Token {
{

public string Name() t.name
{ ...

return name; }
} }

}

ûû
üü

The meaning of the protected access modifier depends on the relationship
between the class that has the modifier and the class that seeks to access the
members that use the modifier.

Members of a derived class can access all of the protected members of their
base class. To a derived class, the protected keyword behaves like the public
keyword. Hence, in the code fragment shown on the slide, the Name method of
CommentToken can access the string name, which is protected inside Token.
It is protected inside Token because CommentToken has specified Token as
its base class.

However, between two classes that are not related by a derived-class and base-
class relationship, protected members of one class act like private members for
the other class. Hence, in the other code fragment shown on the slide, the Fails
method of Outside cannot access the string name, which is protected inside
Token because Outside does not specify Token as its base class.

6 Module 10: Inheritance in C#

Inherited Protected Members
When a derived class inherits a protected member, that member is also
implicitly a protected member of the derived class. This means that protected
members are accessible to all directly and indirectly derived classes of the base
class. This is shown in the following example:

class Base
{
 protected string name;
}

class Derived: Base
{
}

class FurtherDerived: Derived
{
 void Compiles()
 {
 Console.WriteLine(name); // Okay
 }
}

Protected Members and Methods
Methods of a derived class can only access their own inherited protected
members. They cannot access the protected members of the base class through
references to the base class. For example, the following code will generate an
error:

class CommentToken: Token
{
 void AlsoFails(Token t)
 {
 Console.WriteLine(t.name); // Compile-time error
 }
}

Many coding guidelines recommend keeping all data private and using
protected access only for methods.

Protected Members and structs
A struct does not support inheritance. Consequently, you cannot derive from a
struct , and, therefore, the protected access modifier cannot be used in a struct.
For example, the following code will generate an error:

struct Base
{
 protected string name; // Compile-time error
}

Tip

 Module 10: Inheritance in C# 7

Calling Base Class Constructors

n Constructor Declarations Must Use the base Keyword

n A Private Base Class Constructor Cannot Be Accessed by a
Derived Class

n Use the base Keyword to Qualify Identifier Scope

class Token
{

protected Token(string name) { ... }
...

}
class CommentToken: Token
{

public CommentToken(string name) : base(name) { }
...

}

class Token
{

protected Token(string name) { ... }
...

}
class CommentToken: Token
{

public CommentToken(string name) : base(name) { }
...

}

To call a base class constructor from the derived class constructor, use the
keyword base. The syntax for this keyword is as follows:

 C(...): base() {...}

The colon and the accompanying base class constructor call are together known
as the constructor initializer.

Constructor Declarations
If the derived class does not explicitly call a base class constructor, the C#
compiler will implicitly use a constructor initializer of the form :base().
This implies that a constructor declaration of the form

 C(...) {...}

is equivalent to

 C(...): base() {...}

Often this implicit behavior is perfectly adequate because:

n A class with no explicit base classes implicitly extends the System.Object
class, which contains a public parameterless constructor.

n If a class does not contain a constructor, the compiler will automatically
provide a public parameterless constructor called the default constructor.

8 Module 10: Inheritance in C#

If a class provides an explicit constructor of its own, the compiler will not
create a default constructor. However, if the specified constructor does not
match any constructor in the base class, the compiler will generate an error as
shown in the following code:

class Token
{
 protected Token(string name) { ... }
}

class CommentToken: Token
{
 public CommentToken(string name) { ... } // Error here
}

The error occurs because the CommentToken constructor implicitly contains
a :base() constructor initializer, but the base class Token does not contain a
parameterless constructor. You can fix this error by using the code shown on
the slide.

Constructor Access Rules
The access rules for a derived constructor to call a base class constructor are
exactly the same as those for regular methods. For example, if the base class
constructor is private, then the derived class cannot access it:

class NonDerivable
{
 private NonDerivable() { ... }
}

class Impossible: NonDerivable
{
 public Impossible() { ... } // Compile-time error
}

In this case, there is no way for a derived class to call the base class constructor.

 Module 10: Inheritance in C# 9

Scoping an Identifier
You can use the keyword base to also qualify the scope of an identifier. This
can be useful, since a derived class is permitted to declare members that have
the same names as base class members. The following code provides an
example:

class Token
{
 protected string name;
}
class CommentToken: Token
{
 public void Method(string name)
 {
 base.name = name;
 }
}

Unlike in C++, the name of the base class, such as Token in the example
in the slide, is not used. The keyword base unambiguously refers to the base
class because in C# a class can extend one base class at most.

Note

10 Module 10: Inheritance in C#

u Implementing Methods

n Defining Virtual Methods

n Working with Virtual Methods

n Overriding Methods

n Working with Override Methods

n Using new to Hide Methods

n Working with the new Keyword

n Practice: Implementing Methods

n Quiz: Spot the Bugs

You can redefine the methods of a base class in a derived class when the
methods of the base class have been designed for overriding. In this section,
you will learn how to use the virtual, override , and hide method types to
implement this functionality.

 Module 10: Inheritance in C# 11

Defining Virtual Methods

n Syntax: Declare as Virtual

n Virtual Methods Are Polymorphic

class Token
{

...
public int LineNumber()
{ ...
}
public virtual string Name()
{ ...
}

}

class Token
{

...
public int LineNumber()
{ ...
}
public virtual string Name()
{ ...
}

}

A virtual method specifies an implementation of a method that can be
polymorphically overridden in a derived class. Conversely, a non-virtual
method specifies the only implementation of a method. You cannot
polymorphically override a non-virtual method in a derived class.

In C#, whether a class contains a virtual method or not is a good
indication of whether the author designed it to be used as a base class.

Keyword Syntax
To declare a virtual method, you use the virtual keyword. The syntax for this
keyword is shown on the slide.

When you declare a virtual method, it must contain a method body. If it does
not contain a body, the compiler will generate an error, as shown:

class Token
{
 public virtual string Name(); // Compile-time error
}

Note

12 Module 10: Inheritance in C#

Working with Virtual Methods

n To Use Virtual Methods:

l You cannot declare virtual methods as static

l You cannot declare virtual methods as private

To use virtual methods effectively, you need to understand the following:

n You cannot declare virtual methods as static.

You cannot qualify virtual methods as static because static methods are
class methods and polymorphism works on objects, not on classes.

n You cannot declare virtual methods as private.

You cannot declare virtual methods as private because they cannot be
polymorphically overridden in a derived class. Following is an example:

class Token
{
 private virtual string Name() { ... }
 // Compile-time error
}

 Module 10: Inheritance in C# 13

Overriding Methods

n Syntax: Use the override Keyword

class Token
{ ...

public virtual string Name() { ... }
}
class CommentToken: Token
{ ...

public override string Name() { ... }
}

class Token
{ ...

public virtual string Name() { ... }
}
class CommentToken: Token
{ ...

public override string Name() { ... }
}

An override method specifies another implementation of a virtual method. You
define virtual methods in a base class, and they can be polymorphically
overridden in a derived class.

Keyword Syntax
You declare an override method by using the keyword override , as shown in
the following code:

class Token
{ ...
 public virtual string Name() { ... }
}
class CommentToken: Token
{ ...
 public override string Name() { ... }
}

As with a virtual method, you must include a method body in an override
method or the compiler generates an error. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token
{
 public override string Name(); // Compile-time error
}

14 Module 10: Inheritance in C#

Working with Override Methods

n You Can Only Override Identical Inherited Virtual Methods

n You Must Match an Override Method with Its Associated Virtual
Method

n You Can Override an Override Method

n You Cannot Explicitly Declare an Override Method As Virtual

n You Cannot Declare an Override Method As Static or Private

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

public override int LineNumber() { ... }
public override string Name() { ... }

}

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

public override int LineNumber() { ... }
public override string Name() { ... }

}
ûûüü

To use override methods effectively, you must understand a few important
restrictions:

n You can only override identical inherited virtual methods.

n You must match an override method with its associated virtual method.

n You can override an override method.

n You cannot implicitly declare an override method as virtual.

n You cannot declare an override method as static or private.

Each of these restrictions is described in more detail as in the following topics.

You Can Only Override Identical Inherited Virtual
Methods
You can use an override method to override only an identical inherited virtual
method. In the code on the slide, the LineNumber method in the derived class
CommentToken causes a compile-time error because the inherited method
Token.LineNumber is not marked virtual.

You Must Match an Override Method with Its Associated
Virtual Method
An override declaration must be identical in every way to the virtual method it
overrides. They must have the same access level, the same return type, the same
name, and the same parameters.

 Module 10: Inheritance in C# 15

For example, the override in the following example fails because the access-
levels are different (protected as opposed to public), the return types are
different (string as opposed to void), and the parameters are different (none as
opposed to int):

class Token
{
 protected virtual string Name() { ... }
}
class CommentToken: Token
{
 public override void Name(int i) { ... } // Errors
}

You Can Override an Override Method
An override method is implicitly virtual, so you can override it. Following is an
example:

class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token
{
 public override string Name() { ... }
}
class OneLineCommentToken: CommentToken
{
 public override string Name() { ... } // Okay
}

You Cannot Explicitly Declare an Override Method As
Virtual
An override method is implicitly virtual but cannot be explicitly qualified as
virtual. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token
{
 public virtual override string Name() { ... } // Error
}

You Cannot Declare an Override Method As Static or
Private
An override method can never be qualified as static because static methods are
class methods and polymorphism works on objects rather than classes.

Also, an override method can never be private. This is because an override
method must override a virtual method, and a virtual method cannot be private.

16 Module 10: Inheritance in C#

Using new to Hide Methods

n Syntax: Use the new Keyword to Hide a Method

class Token
{ ...

public int LineNumber() { ... }
}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }

}

class Token
{ ...

public int LineNumber() { ... }
}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }

}

You can hide an identical inherited method by introducing a new method into
the class hierarchy. The old method that was inherited by the derived class from
the base class is then replaced by a completely different method.

Keyword Syntax
You use the new keyword to hide a method. The syntax for this keyword is as
follows:

class Token
{ ...
 public int LineNumber() { ... }

 }
class CommentToken: Token
{ ...
 new public int LineNumber() { ... }

}

 Module 10: Inheritance in C# 17

Working with the new Keyword

n Hide Both Virtual and Non-Virtual Methods

n Resolve Name Clashes in Code

n Hide Methods That Have Identical Signatures

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }
public override string Name() { ... }

}

class Token
{ ...

public int LineNumber() { ... }
public virtual string Name() { ... }

}
class CommentToken: Token
{ ...

new public int LineNumber() { ... }
public override string Name() { ... }

}

By using the new keyword, you can do the following:

n Hide both virtual and non-virtual methods.

n Resolve name clashes in code.

n Hide methods that have identical signatures.

Each of these tasks is described in detail in the following subtopics.

Hide Both Virtual and Non-Virtual Methods
Using the new keyword to hide a method has implications if you use
polymorphism. For example, in the code on the slide,
CommentToken.LineNumber is a new method. It is not related to the
Token.LineNumber method at all. Even if Token.LineNumber was a virtual
method, CommentToken.LineNumber would still be a new unrelated method.

18 Module 10: Inheritance in C#

In this example, CommentToken.LineNumber is not virtual. This means that
a further derived class cannot override CommentToken.LineNumber.
However, the new CommentLineToken.LineNumber method could be
declared virtual, in which case further derived classes could override it, as
follows:

class CommentToken: Token
{
 ...
 new public virtual int LineNumber() { ... }
}
class OneLineCommentToken: CommentToken
{
 public override int LineNumber() { ... }
}

The recommended layout style for new virtual methods is

 new public virtual int LineNumber() { ... }
rather than
 public new virtual int LineNumber() { ... }

Resolve Name Clashes in Code
Name clashes often generate warnings during compilation. For example,
consider the following code:

class Token
{
 public virtual int LineNumber() { ... }
}
class CommentToken: Token
{
 public int LineNumber() { ... }
}

When you compile this code, you will receive a warning stating that
CommentToken.LineNumber hides Token.LineNumber. This warning
highlights the name clash. You then have three options to choose from:

1. Add an override qualifier to CommentToken.LineNumber.

2. Add a new qualifier to CommentToken.LineNumber. In this case, the
method still hides the identical method in the base class, but the explicit
new tells the compiler and the code maintenance personnel that the name
clash is not accidental.

3. Change the name of the method.

Tip

 Module 10: Inheritance in C# 19

Hide Methods That Have Identical Signatures
The new modifier is necessary only when a derived class method hides a visible
base class method that has an identical signature. In the following example, the
compiler warns that new is unnecessary bec ause the methods take different
parameters and so do not have identical signatures:

class Token
{
 public int LineNumber(short s) { ... }
}
class CommentToken: Token
{
 new public int LineNumber(int i) { ... } // Warning
}

Conversely, if two methods have identical signatures, then the compiler will
warn that new should be considered because the base class method is hidden. In
the following example, the two methods have identical signatures because
return types are not a part of a method’s signature:

class Token
{
 public virtual int LineNumber() { ... }
}
class CommentToken: Token
{
 public void LineNumber() { ... } // Warning
}

You can also use the new keyword to hide fields and nested classes.

Note

20 Module 10: Inheritance in C#

Practice: Implementing Methods

class A {
public virtual void M() { Console.Write("A"); }

}
class B: A {

public override void M() { Console.Write("B"); }
}
class C: B {

new public virtual void M() { Console.Write("C"); }
}
class D: C {

public override void M() { Console.Write("D"); }
static void Main() {

D d = new D(); C c = d; B b = c; A a = b;
d.M(); c.M(); b.M(); a.M();

}
}

class A {
public virtual void M() { Console.Write("A"); }

}
class B: A {

public override void M() { Console.Write("B"); }
}
class C: B {

new public virtual void M() { Console.Write("C"); }
}
class D: C {

public override void M() { Console.Write("D"); }
static void Main() {

D d = new D(); C c = d; B b = c; A a = b;
d.M(); c.M(); b.M(); a.M();

}
}

To practice the use of the virtual, override and new keywords, work through
the code displayed on this slide to figure out what the output of the code will be.

The Solution
After the program executes, it will display the result DDBB to the console.

Program Logic
There is only one object created by the program. This is the object of type D
created in the following declaration:

D d = new D();

The remaining declaration statements in Main declare variables of different
types that all refer to this one object:

n c is a C reference to d.

n b is a B reference to c, which is reference to d.

n a is an A reference to b, which is reference to c, which is reference to d.

Then come the four expression statements. The following text explains each
one individually.

The first statement is

d.M()

This is a call to D.M, which is declared override and hence is implicitly virtual.
This means that at run time the compiler calls the most derived implementation
of D.M in the object of type D. This implementation is D.M, which writes D to
the console.

 Module 10: Inheritance in C# 21

The second statement is

c.M()

This is a call to C.M, which is declared virtual. This means that at run time the
compiler calls the most derived implementation of C.M in the object of type D.
Since D.M overrides C.M, D.M is the most derived implementation, in this
case. Hence D.M is called, and it writes D to the console again.

The third statement is

b.M()

This is a call to B.M, which is declared override and hence is implicitly virtual.
This means that at run time the compiler calls the most derived implementation
of B.M in the object of type D. Since C.M does not override B.M but
introduces a new method that hides C.M, the most derived implementation of
B.M in the object of type D is B.M. Hence B.M is called, and it writes B to the
console.

The last statement is

a.M()

This is a call to A.M, which is declared virtual. This means that at run time the
compiler calls the most derived implementation of A.M in the object of type D.
B.M overrides A.M, but as before C.M does not override B.M. Hence the most
derived implementation of A.M in the object of type D is B.M. Hence B.M is
called, which writes B to the console again.

This is how the program generates the output DDBB and writes it to the console.

In this example, the C and D classes contain two virtual methods that have the
same signature: the one introduced by A and the one introduced by C. The
method introduced by C hides the method introduced by A. Thus, the override
declaration in D overrides the method introduced by C, and it is not possible for
D to override the method introduced by A.

22 Module 10: Inheritance in C#

This page intentionally left blank.

 Module 10: Inheritance in C# 23

Quiz: Spot the Bugs

class Base
{

public void Alpha() { ... }
public virtual void Beta() { ... }
public virtual void Gamma(int i) { ... }
public virtual void Delta() { ... }
private virtual void Epsilon() { ... }

}
class Derived: Base
{

public override void Alpha() { ... }
protected override void Beta() { ... }
public override void Gamma(double d) { ... }
public override int Delta() { ... }

}

class Base
{

public void Alpha() { ... }
public virtual void Beta() { ... }
public virtual void Gamma(int i) { ... }
public virtual void Delta() { ... }
private virtual void Epsilon() { ... }

}
class Derived: Base
{

public override void Alpha() { ... }
protected override void Beta() { ... }
public override void Gamma(double d) { ... }
public override int Delta() { ... }

}

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

24 Module 10: Inheritance in C#

Answers
The following errors occur in this code:

1. The Base class declares a private virtual method called Epsilon. Private
methods cannot be virtual. The C# compiler traps this bug as a compile-time
error. You can correct the code as follows:

class Base
{
 ...
 public virtual void Epsilon() { ... }
}

You can also correct the code in this manner:

class Base
{
 ...
 private void Epsilon() { ... } // Not virtual
}

2. The Derived class declares the Alpha method with the override modifier.
However, the Alpha method in the base class is not marked virtual. You can
only override a virtual method. The C# compiler traps this bug as a compile-
time error. You can correct the code as follows:

class Base
{
 public virtual void Alpha() { ... }
 ...
}

You can also correct the code in this manner:

class Derived: Base
{
 /*any*/ new void Alpha() { ... }
 ...
}

3. The Derived class declares a protected method called Beta with the
override modifier. However, the base class method Beta is public. When
overriding a method, you cannot change its access. The C# compiler traps
this bug as a compile-time error. You can correct the code as follows:

class Derived: Base
{
 ...
 public override void Beta() { ... }
 ...
}

 Module 10: Inheritance in C# 25

You can also correct the code in this manner:

class Derived: Base
{
 ...
 /* any access */ new void Beta() { ... }
 ...
}

4. The Derived class declares a public method called Gamma with the
override modifier. However, the base class method called Gamma and the
Derived class method called Gamma take different parameters. When
overriding a method, you cannot change the parameter types. The C#
compiler traps this bug as a compile-time error. You can correct the code as
follows:

class Derived: Base
{
 ...
 public virtual void Gamma(int i) { ... }
}

You can also correct the code in this manner:

class Derived: Base
{
 ...
 /* any access */ void Gamma(double d) { ... }
 ...
}

5. The Derived class declares a public method called Delta with the override
modifier. However, the base class method called Delta and the derived class
method called Delta return different types. When overriding a method, you
cannot change the return type. The C# compiler traps this bug as a compile-
time error. You can correct the code as follows:

class Derived: Base
{
 ...
 public override int Delta() { ... }
}

You can also correct the code in this manner:

class Derived: Base
{
 ...
 /* any access */ new int Delta() { ... }
 ...
}

26 Module 10: Inheritance in C#

Using Sealed Classes
n You Cannot Derive from a Sealed Class

n You Can Use Sealed Classes for Optimizing Operations
at Run Time

n Many .NET Classes Are Sealed: String, StringBuilder,
and so on

n Syntax: Use the sealed Keyword

namespace System
{

public sealed class String
{

...
}

}
namespace Mine
{

class FancyString: String { ... }
}

namespace System
{

public sealed class String
{

...
}

}
namespace Mine
{

class FancyString: String { ... }
} ûû

Creating a flexible inheritance hierarchy is not easy. Most classes are
standalone classes and are not designed to have other classes derived from them.
However, in terms of the syntax, deriving from a class is very easy and the
procedure involves only a few keystrokes. This ease of derivation creates a
dangerous opportunity for programmers to derive from a class that is not
designed to act as a base class.

To alleviate this problem and to better express the programmers’ intentions to
the compiler and to fellow programmers, C# allows a class to be declared
sealed. You cannot derive from a sealed class.

 Module 10: Inheritance in C# 27

Keyword Syntax
You can seal a class by using the sealed keyword. The syntax for this keyword
is as shown:

namespace System
{
 public sealed class String
 {
 ...
 }
}

There are many examples of sealed classes in the Microsoft® .NET Framework.
The slide shows the System.String class, where the keyword string is an alias
for this class. This class is sealed, and so you cannot derive from it.

Optimizing Operations at Run Time
The sealed modifier enables certain run-time optimizations. In particular,
because a sealed class is known to never have any derived classes, it is possible
to transform virtual function member calls on sealed class instances into non-
virtual function member calls.

28 Module 10: Inheritance in C#

u Using Interfaces

n Declaring Interfaces

n Implementing Multiple Interfaces

n Implementing Interface Methods

n Implementing Interface Methods Explicitly

n Quiz: Spot the Bugs

An interface specifies a syntactic and semantic contract that all derived classes
must adhere to. Specifically, an interface describes the what part of the contract
and the classes that implement the interface describe the how part of the
contract.

In this section, you will learn the syntax for declaring interfaces and the two
techniques for implementing interface methods in derived classes.

 Module 10: Inheritance in C# 29

Declaring Interfaces

n Syntax: Use the interface Keyword to Declare Methods

interface IToken
{

int LineNumber();
string Name();

}

interface IToken
{

int LineNumber();
string Name();

}

IToken
« interface »

IToken
« interface »

LineNumber()
Name()
LineNumber()
Name()

No method bodiesNo method bodiesNo method bodies

Interface names should
begin with a capital “I”

Interface names should Interface names should
begin with a capital “I”begin with a capital “I”

No access specifiersNo access specifiersNo access specifiers

An interface resembles a class without any code. You declare an interface in a
similar manner to the way in which you declare a class. To declare an interface
in C#, you use the keyword interface instead of class. The syntax for this
keyword is explained on the slide.

It is recommended that all interface names be prefixed with a capital "I."
For example, use IToken rather than Token.

Note

30 Module 10: Inheritance in C#

Features of Interfaces
The following are two important features of interfaces.

Interface Methods Are Implicitly Public
The methods declared in an interface are implicitly public. Therefore, explicit
public access modifiers are not allowed, as shown in the following example:

interface IToken
{
 public int LineNumber(); // Compile-time error
}

Interface Methods Do Not Contain Method Bodies
The methods declared in an interface are not allowed to contain method bodies.
For example, the following code is not allowed:

interface IToken
{
 int LineNumber() { ... } // Compile-time error
}

Strictly speaking, interfaces can contain interface property declarations, which
are declarations of properties with no body, interface event declarations, which
are declarations of events with no body, and interface indexer declarations,
which are declarations of indexers with no body.

 Module 10: Inheritance in C# 31

Implementing Multiple Interfaces

n A Class Can Implement Zero or More Interfaces

n An Interface Can Extend Zero or More Interfaces

n A Class Can Be More Accessible Than Its Base Interfaces

n An Interface Cannot Be More Accessible Than Its Base Interfaces

n A Class Must Implement All Inherited Interface Methods

interface IToken
{

string Name();
}
interface IVisitable
{

void Accept(IVisitor);
}
class Token: IToken, IVisitable
{ ...
}

interface IToken
{

string Name();
}
interface IVisitable
{

void Accept(IVisitor);
}
class Token: IToken, IVisitable
{ ...
}

IToken
« interface »

IToken
« interface »

IVisitable
« interface »
IVisitable

« interface »

Token
« concrete »

Token
« concrete »

Although C# permits only single inheritance, it allows you to implement
multiple interfaces in a single class. This topic discusses the differences
between a class and an interface with respect to implementation and extension
of interfaces, respectively, in addition to their accessibility in comparison to
their base interfaces.

Interface Implementation
A class can implement zero or more interfaces but can explicitly extend no
more than one class. An example of this feature is displayed on the slide.

Strictly speaking, a class always extends one class. If you do not specify
a base class, your class will implicitly inherit from object.

Note

32 Module 10: Inheritance in C#

In contrast, an interface can extend zero or more interfaces. For example, you
can rewrite the code on the slide as follows:

interface IToken { ... }
interface IVisitable { ... }
interface IVisitableToken: IVisitable, IToken { ... }
class Token: IVisitableToken { ... }

Accessibility
A class can be more accessible than its base interfaces. For example, you can
declare a public class that implements a private interface, as follows:

class Example
{
 private interface INested { }
 public class Nested: INested { } // Okay
}

However, an interface cannot be more accessible than any of its base interfaces.
It is an error to declare a public interface that extends a private interface, as
shown in the following example:

class Example
{
 private interface INested { }

 public interface IAlsoNested: INested { }
 // Compile-time error
}

Interface Methods
A class must implement all methods of any interfaces it extends, regardless of
whether the interfaces are inherited directly or indirectly.

 Module 10: Inheritance in C# 33

Implementing Interface Methods

n The Implementing Method Must Be the Same As the
Interface Method

n The Implementing Method Can Be virtual or Non-Virtual

class Token: IToken, IVisitable
{

public virtual string Name()
{ ...
}
public void Accept(IVisitor v)
{ ...
}

}

class Token: IToken, IVisitable
{

public virtual string Name()
{ ...
}
public void Accept(IVisitor v)
{ ...
}

}

Same access
Same return type
Same name
Same parameters

Same access Same access
Same return typeSame return type
Same nameSame name
Same parametersSame parameters

When a class implements an interface, it must implement every method
declared in that interface. This requirement is practical because interfaces
cannot define their own method bodies.

The method that the class implements must be identical to the interface method
in every way. It must have the same:

n Access

Since an interface method is implicitly public, this means that the
implementing method must be explicitly declared public. If the access
modifier is omitted, then the method defaults to being private.

n Return type

If the return type in the interface is declared as T, then the return type in
the implementing class cannot be declared as a type derived from T; it must
be T. In other words, return type covariance is not supported in C#.

n Name

Remember that names in C# are case sensitive.

n Parameter-type list

34 Module 10: Inheritance in C#

The following code meets all of these requirements:

interface IToken
{
 string Name();
}
interface IVisitable
{
 void Accept(IVisitor);
}
class Token: IToken, IVisitable
{
 public virtual string Name()
 { ...
 }
 public void Accept(IVisitor v)
 { ...
 }
}

The implementing method can be virtual, such as Name in the preceding code.
In this case, the method can be overridden in further derived classes. The
implementing method can also be non-virtual, such as Accept in the preceding
code. In the latter case, the method cannot be overridden in further derived
classes.

 Module 10: Inheritance in C# 35

Implementing Interface Methods Explicitly

n Use the Fully Qualified Interface Method Name

n Restrictions of Explicit Interface Method Implementation

l You can only access methods through the interface

l You cannot declare methods as virtual

l You cannot specify an access modifier

class Token: IToken, IVisitable
{

string IToken.Name()
{ ...
}
void IVisitable.Accept(IVisitor v)
{ ...
}

}

class Token: IToken, IVisitable
{

string IToken.Name()
{ ...
}
void IVisitable.Accept(IVisitor v)
{ ...
}

}

An alternative way for a class to implement a method inherited from an
interface is to use an explicit interface method implementation.

Use the Fully Qualified Interface Method Name
When using the explicit interface method implementation, you must use the
fully qualified name of the implementing method. This implies that the name of
the method must include the name of the interface as well, such as IToken in
IToken.Name.

An example of two interface methods implemented explicitly by the Token
class is displayed on the slide. Notice the differences between this
implementation and the earlier implementation.

36 Module 10: Inheritance in C#

Restrictions of Explicit Interface Method Implementation
When implementing explicit interfaces, you need to be aware of certain
restrictions.

You Can Only Access Methods Through the Interface
You cannot access an explicit interface method implementation from anywhere
except through the interface. This is shown in the following example:

class Token: IToken, IVisitable
{
 string IToken.Name()
 {
 ...
 }
 private void Example()
 {
 Name(); // Compile-time error

 ((IToken)this).Name(); // Okay
 }
}

You Cannot Declare Methods As Virtual
In particular, a further derived class cannot access an explicit interface method
implementation, and, as a result, no method can override it. This implies that an
explicit interfac e method implementation is not virtual and cannot be declared
virtual.

You Cannot Specify an Access Modifier
When defining an explicit interface method implementation, you cannot specify
an access modifier. This is because explicit interface member implementations
have different accessibility characteristics than other methods.

No Direct Access
An explicit interface method implementation is not directly accessible to clients
and in this sense is private. This is shown in the following code:

class InOneSensePrivate
{
 void Method(Token t)
 {
 t.Name(); // Compile-time error
 }
}

 Module 10: Inheritance in C# 37

Indirect Access Through Interface Variable
An explicit interface method implementation is indirectly accessible to clients
by means of an interface variable and polymorphism. In this sense, it is public.
This is shown in the following code:

class InAnotherSensePublic
{
 void Method(Token t)
 {
 ((IToken)t).Name(); // Okay
 }
}

Advantages of an Explicit Implementation
Explicit interface member implementations serve two primary purposes:

1. They allow interface implementations to be excluded from the public
interface of a class or struct. This is useful when a class or struct
implements an internal interface that is of no interest to the class or struct
user.

2. They allow a class or struct to provide different implementations for
interface methods that have the same signature. Following is an example:

interface IArtist
{
 void Draw();
}
interface ICowboy
{
 void Draw();
}
class ArtisticCowboy: IArtist, ICowboy
{
 void IArtist.Draw()
 {
 ...
 }
 void ICowboy.Draw()
 {
 ...
 }
}

38 Module 10: Inheritance in C#

This page intentionally left blank.

 Module 10: Inheritance in C# 39

Quiz: Spot the Bugs

interface IToken
{

string Name();
int LineNumber() { return 42; }
string name;

}

class Token
{

public string IToken.Name() { ... }
static void Main()
{

IToken t = new IToken();
}

}

interface IToken
{

string Name();
int LineNumber() { return 42; }
string name;

}

class Token
{

public string IToken.Name() { ... }
static void Main()
{

IToken t = new IToken();
}

}

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

40 Module 10: Inheritance in C#

Answers
The following bugs occur in the code on the slide:

1. The IToken interface declares a method called LineNumber that has a
body. An interface cannot contain any implementation. The C# compiler
traps this bug as a compile-time error. The corrected code is as follows:

interface IToken
{
 ...
 int LineNumber();
 ...
}

2. The IToken interface declares a field called name. An interface cannot
contain any implementation. The C# compiler traps this bug as a compile-
time error. The corrected code is as follows:

interface IToken
{
 string Name();
 int LineNumber();
 //string name; // Field now commented out
}

3. The Token class contains the explicit interface method implementation
IToken.Name() but the class does not specify IToken as a base interface.
The C# compiler traps this bug as a compile-time error. The corrected code
is as follows:

class Token: IToken
{
 ...
}

4. Now that Token specifies IToken as a base interface, it must implement
both methods declared in that interface. The C# compiler traps this bug as a
compile-time error. The corrected code is as follows:

class Token: IToken
{
 public string Name() { ... }
 public int LineNumber() { ... }
 ...
}

 Module 10: Inheritance in C# 41

5. The Token.Main method attempts to create an instance of the interface
IToken. However, you cannot create an instance of an interface. The C#
compiler traps this bug as a compile-time error. The corrected code is as
follows:

class Token: IToken
{
 ...
 static void Main()
 {
 IToken t = new Token();
 ...
 }
}

42 Module 10: Inheritance in C#

u Using Abstract Classes

n Declaring Abstract Classes

n Using Abstract Classes in a Class Hierarchy

n Comparing Abstract Classes to Interfaces

n Implementing Abstract Methods

n Working with Abstract Methods

n Quiz: Spot the Bugs

Abstract classes are used to provide partial class implementations that can be
completed by derived concrete classes. Abstract classes are particularly useful
for providing a partial implementation of an interface that can be reused by
multiple derived classes.

This section describes the syntax for declaring an abstract class, presents some
examples of how you can use abstract classes in a class hierarchy, and
introduces abstract methods.

 Module 10: Inheritance in C# 43

Declaring Abstract Classes

n Use the abstract Keyword

abstract class Token
{

...
}
class Test
{

static void Main()
{

new Token();
}

}

abstract class Token
{

...
}
class Test
{

static void Main()
{

new Token();
}

}

Token
{ abstract }

Token
{ abstract }

An abstract class cannot
be instantiated

An abstract class cannotAn abstract class cannot
be instantiatedbe instantiatedûû

You declare an abstract class by using the keyword abstract, as is shown on the
slide.

The rules governing the use of an abstract class are almost exactly the same as
those governing a non-abstract class. The only differences between using
abstract and non-abstract classes are:

n You cannot create an instance of an abstract class.

In this sense, abstract classes are like interfaces.

n You can create an abstract method in an abstract class.

An abstract class can declare an abstract method, but a non-abstract class
cannot.

Common features of abstract classes and non-abstract classes are:

n Limited extensibility

An abstract class can extend at most one other class or abstract class. Note
that an abstract class can extend a non-abstract class, whereas the converse
is not true.

n Multiple interfaces

An abstract class can implement multiple interfaces.

n Inherited interface methods

An abstract class must implement all inherited interface methods.

44 Module 10: Inheritance in C#

Using Abstract Classes in a Class Hierarchy

interface IToken
{

string Name();
}

abstract class Token: IToken
{

string IToken.Name()
{ ...
}
...

}

class CommentToken: Token
{ ...
}
class KeywordToken: Token
{ ...
}

interface IToken
{

string Name();
}

abstract class Token: IToken
{

string IToken.Name()
{ ...
}
...

}

class CommentToken: Token
{ ...
}
class KeywordToken: Token
{ ...
}

n Example 1

Token
{ abstract }

Token
{ abstract }

IToken
« interface »

IToken
« interface »

Comment
Token

« concrete »

Comment
Token

« concrete »

Keyword
Token

« concrete »

Keyword
Token

« concrete »

The role of abstract classes in a classic three-tier hierarchy, consisting of an
interface, an abstract class, and a concrete class, is to provide a complete or
partial implementation of an interface.

An Abstract Class Implementing an Interface
Consider Example 1, which appears on the slide. In this example, the abstract
class implements an interface. It is an explicit implementation of the interface
method. The explicit implementation is not virtual and therefore cannot be
overridden in the further derived classes, such as CommentToken.

However, it is possible for CommentToken to re-implement the IToken
interface as follows:

interface IToken
{
 string Name();
}

abstract class Token: IToken
{
 string IToken.Name() { ... }
}

class CommentToken: Token, IToken
{
 public virtual string Name() { ... }
}

Note that in this case it is not necessary to mark CommentToken.Name as a
new method. This is because a derived class method can hide only a visible
base class method, but the explicit implementation of Name in Token is not
directly visible in CommentToken.

 Module 10: Inheritance in C# 45

Using Abstract Classes in a Class Hierarchy (continued)

interface IToken
{

string Name();
}

abstract class Token
{

public virtual string Name()
{ ...
}
...

}

class CommentToken: Token, IToken
{ ...
}
class KeywordToken: Token, IToken
{ ...
}

interface IToken
{

string Name();
}

abstract class Token
{

public virtual string Name()
{ ...
}
...

}

class CommentToken: Token, IToken
{ ...
}
class KeywordToken: Token, IToken
{ ...
}

n Example 2

Token
{ abstract }

Token
{ abstract }

IToken
« interface »

IToken
« interface »

Comment
Token

« concrete »

Comment
Token

« concrete »

Keyword
Token

« concrete »

Keyword
Token

« concrete »

To continue the discussion of the role played by abstract classes in a classic
three-tier hierarchy, another example is presented in the slide.

An Abstract Class That Does Not Implement an Interface
Consider Example 2, which appears on the slide. In this example, the abstract
class does not implement the interface. This means that the only way it can
supply an interface implementation to a further derived concrete class is by
providing a public method. The method definition in the abstract class is
optionally virtual, so it can be overridden in the classes as shown in the
following code:

interface IToken
{
 string Name();
}
abstract class Token
{
 public virtual string Name() { ... }
}
class CommentToken: Token, IToken
{
 public override string Name() { ... } // Okay
}

This shows that a class can inherit its interface and its implementation of that
interface from separate branches of the inheritance.

46 Module 10: Inheritance in C#

Comparing Abstract Classes to Interfaces

n Similarities

l Neither can be instantiated

l Neither can be sealed

n Differences

l Interfaces cannot contain any implementation

l Interfaces cannot declare non-public members

l Interfaces cannot extend non-interfaces

Both abstract classes and interfaces exist to be derived from (or implemented).
However, a class can extend at most one abstract class, so you need to be more
careful when deriving from an abstract class than you need to be when deriving
from an interface. Reserve the use of abstract classes for implementing true “is
a” relationships.

The similarities between abstract classes and interfaces are that they:

n Cannot be instantiated.

This means that they cannot be used directly to create objects.

n Cannot be sealed.

This is acceptable because if an interface is sealed, it cannot not be
implemented.

The differences between abstract classes and interfaces are summarized in the
following table.

Interfaces Abstract classes

Cannot contain implementation Can contain implementation

Cannot declare non-public members Can declare non -public members

Can extend only other interfaces Can extend other classes, which can be
non-abstract

When comparing the similarities and differences between abstract classes and
interfaces, think of abstract classes as unfinished classes that contain plans for
what needs to be finished.

 Module 10: Inheritance in C# 47

Implementing Abstract Methods

n Syntax: Use the abstract Keyword

n Only Abstract Classes Can Declare Abstract Methods

n Abstract Methods Cannot Contain a Method Body

abstract class Token
{

public virtual string Name() { ... }
public abstract int Length();

}
class CommentToken: Token
{

public override string Name() { ... }
public override int Length() { ... }

}

abstract class Token
{

public virtual string Name() { ... }
public abstract int Length();

}
class CommentToken: Token
{

public override string Name() { ... }
public override int Length() { ... }

}

You declare an abstract method by adding the abstract modifier to the method
declaration. The syntax of the abstract modifier is displayed on the slide.

Only abstract classes can declare abstract methods. Following is an example:

interface IToken
{
 public abstract string Name(); // Compile-time error
}
class CommentToken
{
 public abstract string Name(); // Compile-time error
}

C++ developers can consider abstract methods to be the same as pure
virtual methods in C++.

Abstract Methods Cannot Contain a Method Body
Abstract methods cannot contain any implementation. This is highlighted in the
following code:

abstract class Token
{
 public abstract string Name() { ... }
 // Compile-time error
}

Note

48 Module 10: Inheritance in C#

Working with Abstract Methods

n Abstract Methods Are Virtual

n Override Methods Can Override Abstract Methods in
Further Derived Classes

n Abstract Methods Can Override Base Class Methods
Declared As Virtual

n Abstract Methods Can Override Base Class Methods
Declared As Override

When implementing abstract methods, you need to be aware of the following:

n Abstract methods are virtual.

n Override methods can override abstract methods in further derived classes.

n Abstract methods can override base class methods that are declared as
virtual.

n Abstract methods can override base class methods that are declared as
override.

Each of these is described in detail in the following topics.

Abstract Methods Are Virtual
Abstract methods are considered implicitly virtual but cannot be explicitly
marked as virtual, as shown in the following code:

abstract class Token
{
 public virtual abstract string Name() { ... }
 // Compile-time error
}

 Module 10: Inheritance in C# 49

Override Methods Can Override Abstract Methods in
Further Derived Classes
Because they are implicitly virtual, you can override abstract methods in
derived classes. Following is an example:

class CommentToken: Token
{
 public void override string Name();
}

Abstract Methods Can Override Base Class Methods
Declared As Virtual
Overriding a base class method declared as virtual forces a further derived class
to provide its own method implementation and makes the original
implementation of the method unavailable. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
abstract class Force: Token
{
 public abstract override string Name();
}

Abstract Methods Can Override Base Class Methods
Declared As Override
Overriding a base class method declared as override forces a further derived
class to provide its own method implementation and makes the original
implementation of the method unavailable. Following is an example:

class Token
{
 public virtual string Name() { ... }
}
class AnotherToken: Token
{
 public override string Name() { ... }
}
abstract class Force: AnotherToken
{
 public abstract override string Name();
}

50 Module 10: Inheritance in C#

This page intentionally left blank.

 Module 10: Inheritance in C# 51

Quiz: Spot the Bugs

class First
{

public abstract void Method();
}

class First
{

public abstract void Method();
}

abstract class Second
{

public abstract void Method() { }
}

abstract class Second
{

public abstract void Method() { }
}

interface IThird
{

void Method();
}
abstract class Third: IThird
{
}

interface IThird
{

void Method();
}
abstract class Third: IThird
{
}

222

333

111

In this quiz, you can work with a partner to spot the bugs in the code on the
slide. To see the answers to this quiz, turn the page.

52 Module 10: Inheritance in C#

Answers
The following bugs occur in the code on the slide:

1. You can only declare an abstract method in an abstract class. The C#
compiler traps this bug as a compile-time error. You can fix the code by
rewriting it as follows:

abstract class First
{
 public abstract void Method();
}

2. An abstract method cannot declare a method body. The C# compiler traps
this bug as a compile-time error. You can fix the code by rewriting it as
follows:

abstract class Second
{
 public abstract void Method();
}

3. The C# compiler traps this as a compile-time error. An abstract class must
provide for the implementation of all methods in interfaces that it
implements in much the same way as a concrete class. The main difference
is that when you use an abstract class this can be achieved directly or
indirectly. You can fix the code by rewriting it as follows:

abstract class Third: IThird
{
 public virtual void Method() { ... }
}

Alternatively, if you do not want to implement the body of Method in an
abstract class, you can declare it abstract and thus ensure that a derived class
will implement it:

abstract class Third: IThird
{
 public abstract void Method();
}

 Module 10: Inheritance in C# 53

Lab 10: Using Inheritance to Implement an Interface

Objectives
After completing this lab, you will be able to:

n Define and use interfaces, abstract classes, and concrete classes.

n Implement an interface in a concrete class.

n Know how and when to use the virtual and override keywords.

n Define an abstract class and use it in a class hierarchy.

n Create sealed classes to prevent inheritance.

Prerequisites
Before working on this lab, you must be able to:

n Create classes in C#.

n Define methods for classes.

Estimated time to complete this lab: 75 minutes

54 Module 10: Inheritance in C#

Exercise 1
Converting a C# Source File into a Color Syntax HTML File

Frameworks are extremely useful because they provide an easy-to-use, flexible
body of code. Unlike a library, which you use by directly calling a method, you
use a framework by creating a new class that implements an interface. The
framework code can then polymorphically call the methods of your class by
means of the interface operations. Hence, a well-designed framework can be
used in many different ways, unlike a library method, which can only be used in
one way.

Scenario
This exercise uses a pre-written hierarchy of interfaces and classes that form a
miniature framework. The framework tokenizes a C# source file and stores the
different kinds of tokens in a collection held in the SourceFile class. An
ITokenVisitor interface with Visit operations is also provided, which in
combination with the Accept method of SourceFile allows every token of the
source file to be visited and processed in sequence. When you visit a token,
your class can perform whatever processing it requires by using that token.

An abstract class called NullTokenVisitor has been created that implements all
the Visit methods in ITokenVisitor by using empty methods. If you do not
want to implement every method in ITokenVisitor, you can derive a class from
NullTokenVisitor instead and override only the Visit methods that you want.

In this exercise, you will derive an HTMLTokenVisitor class from the
ITokenVisitor interface. You will implement each overloaded Visit method in
this derived clas s to output to the console the token bracketed by Hypertext
Markup Language (HTML) and markers. You will run
a simple batch file, which will run the created executable and redirect console
output to create an HTML page that uses a cascading style sheet. You will then
open the HTML page in Internet Explorer to see the original source file
displayed with color-coded syntax.

 Module 10: Inheritance in C# 55

å To familiarize yourself with the interfaces

1. Open the ColorTokeniser.sln project in the install folder\
Labs\Lab10\Starter\ColorTokeniser folder.

2. Study the classes and interfaces in the files Itoken.cs, Itoken_visitor.cs and
source_file.cs. These collaborate in the following hierarchy:

56 Module 10: Inheritance in C#

å To create an abstract NullTokenVisitor class

1. Open the null_token_visitor.cs file.

Notice that NullTokenVisitor is derived from the ITokenVisitor interface,
yet it does not implement any of the operations specified in the interface.
You will implement all of the inherited operations to be empty methods in
order to enable HTMLTokenVisitor to be built incrementally.

2. Add a public virtual method called Visit to the NullTokenVisitor class.
This method will return void and accept a single ILineStartToken
parameter. The body of the method will be empty. The method will look as
follows:

public class NullTokenVisitor : ITokenVisitor
{
 public virtual void Visit(ILineStartToken t) { }
 ...
}

3. Repeat step 2 for all other overloaded Visit methods declared in the
ITokenVisitor interface.

Implement all Visit methods in NullTokenVisitor as empty bodies.

4. Save your work.

5. Compile null_token_visitor.cs.

If you have implemented all of the Visit operations from the ITokenVisitor
interface, the compilation will be successful. If you have omitted any
operations, the compiler will issue an error message.

 Module 10: Inheritance in C# 57

6. Add a private static void method called Test to the NullTokenVisitor class.

This method will expect no parameters. The body of this method should
contain a single statement that creates a new NullTokenVisitor object. This
statement will verify that the NullTokenVisitor class has implemented all
of the Visit operations and that NullTokenVisitor instances can be created.
The code for this method will be as follows:

public class NullTokenVisitor : ITokenVisitor
{
 ...
 static void Test()
 {
 new NullTokenVisitor();
 }
}

7. Save your work.

8. Compile null_token_visitor.cs and correct any errors.

9. Change the definition of NullTokenVisitor.

Since the purpose of the NullTokenVisitor class is not to be instantiated but
to be derived from, you need to change the definition so that it is an abstract
class.

10. Compile null_token_visitor.cs again.

Also, verify that the new statement inside the Test method now causes an
error, as you cannot create instances of an abstract class.

11. Delete the Test method.

12. NullTokenVisitor should now look like this:

public abstract class NullTokenVisitor : ITokenVisitor
{
 public virtual void Visit(ILineStartToken t) { }
 public virtual void Visit(ILineEndToken t) { }

 public virtual void Visit(ICommentToken t) { }
 public virtual void Visit(IDirectiveToken t) { }
 public virtual void Visit(IIdentifierToken t) { }
 public virtual void Visit(IKeywordToken t) { }
 public virtual void Visit(IWhiteSpaceToken t) { }

 public virtual void Visit(IOtherToken t) { }
}

58 Module 10: Inheritance in C#

å To create an HTMLTokenVisitor class

1. Open the html_token_visitor.cs file.

2. Change the HTMLTokenVisitor class so that it derives from the
NullTokenVisitor abstract class.

3. Open the main.cs file, and add two statements to the static InnerMain
method.

a. The first statement will declare a variable called visitor of type
HTMLTokenVisitor and initialize it with a newly created
HTMLTokenVisitor object.

b. The second statement will pass visitor as the parameter to the Accept
method being called on the already declared source variable.

4. Save your work.

5. Compile the program and correct any errors.

Run the program from the command line, passing the name of a .cs source
file from the install folder\Labs\Lab10\Starter\ColorTokeniser\bin\debug
folder as the command-line argument.

Nothing will happen, because you have not yet defined any methods in
HTMLTokenVisitor class!

 Module 10: Inheritance in C# 59

6. Add a public non-static Visit method to the HTMLTokenVisitor class.
This method will return void and accept a single ILineStartToken
parameter called line .

Implement the body of the method as a single statement that calls Write
(not WriteLine), displaying the value of line.Number() to the console.
Note that Number is an operation declared in the ILineStartToken
interface. Do not qualify the method with a virtual or override keyword.
This is shown in the following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public void Visit(ILineStartToken line)
 {
 Console.Write(line.Number()); // Not WriteLine
 }
}

7. Save your work.

8. Compile the program.

Run the program again, as before. Nothing will happen, because the Visit
method in HTMLTokenVisitor is hiding the Visit method in the base class
NullTokenVisitor .

9. Change HTMLTokenVisitor.Visit(ILineStartToken) so that it overrides
Visit from its base class.

This will make HTMLTokenVisitor.Visit polymorphic, as shown in the
following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ILineStartToken line)
 {
 Console.Write(line.Number());
 }
}

10. Save your work.

11. Compile the program and correct any errors.

Run the program as before. Output will be displayed. It will contain
ascending numbers with no intervening white space. (The numbers are
generated line numbers for the file that you specified.)

60 Module 10: Inheritance in C#

12. In HTMLTokenVisitor, define an overloaded public non-static Visit
method that returns void and accepts a single ILineEndToken parameter.

This revision adds a new line between lines of output tokens. Notice that
this operation is declared in the ITokenVisitor interface. Implement the
body of this method to print a single new line to the console, as shown.
(Note that this method uses WriteLine , not Write.)

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...

 public override void Visit(ILineEndToken t)
 {
 Console.WriteLine(); // Not Write
 }

}

13. Save your work.

14. Compile the program and correct any errors.

Run the program as before. This time each line number is terminated with a
separate line.

å To use HTMLTokenVisitor to display C# source file tokens

1. Add a public non-static Visit method to the HTMLTokenVisitor class.
This method will return void and accept a single IIdentifierToken
parameter called token. It should override the corresponding method in the
NullTokenVisitor base class.

2. Implement the body of the method as a single statement that calls Write,
displaying token to the console as a string. Open the IToken.cs file and
note that IIdentifierToken is derived from IToken and that IToken
declares a ToString method. This is shown in the following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(IIdentifierToken token)
 {
 Console.Write(token.ToString());
 }
}

3. Save your work.

4. Compile the program and correct any errors.

Run the program as before. This time the output includes all of the
identifiers.

5. Repeat steps 1 through 3, adding four more overloaded Visit methods to
HTMLTokenVisitor.

Each of these will expect a single parameter of type ICommentToken,
IKeywordToken, IWhiteSpaceToken, and IOtherToken, respectively.
The bodies of these methods will all be exactly as described in step 2.

 Module 10: Inheritance in C# 61

å To convert a C# source file into an HTML file

1. In the install folder\Labs\Lab10\Starter\ColorTokeniser\bin\debug folder,
there is a batch script called generate.bat. This script executes the
ColorTokeniser program, using a command-line parameter that you pass to
it. It also performs some pre-processing and post-processing of the
tokenized file that is produced. It performs this processing by using a
cascading style sheet (code_style.css) to convert the output into HTML.

From the command prompt, run the program by using the generate batch file,
passing in token.cs file as a parameter. (This is actually a copy of part of the
source code for your program, but it will work as an example .cs file.)
Capture the output to another file that has an .html suffix. Following is an
example:

generate token.cs > token.html

2. Use Internet Explorer to display the .html file that you just created
(token.html in the example in the previous step). You can do this by typing
token.html at the command prompt.

The displayed result will not be pretty! Line numbers greater than 9 are all
indented differently from the lines with numbers less than 10. This is
because numbers less than 10 have a single digit, whereas numbers greater
than 9 have two digits. Notice also that the line numbers are in the same
color as the source file tokens, which is not helpful.

å To find and fix the line number and indentation problems

1. Change the definition of the Visit(ILineStartToken) method as follows to
add some output that fixes both of these problems. This is shown in the
following code:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ILineStartToken line)
 {
 Console.Write("");
 Console.Write("{0,3}", line.Number());
 Console.Write("");
 }
 ...
}

2. Save your work.

3. Compile the program and correct any errors.

4. Re-create the token.html file from the token.cs source file from the
command line as before:

generate token.cs > token.html

62 Module 10: Inheritance in C#

5. Open token.html in Internet Explorer.

There is stil l a problem. Compare the appearance of token.html in Internet
Explorer to the original token.cs file. Notice that the first comment in
token.cs (/// <summary>) appears in the browser as “///”. The <summary>
has been lost. The problem is that in HTML some characters have a special
meaning. To display the left angle bracket (<), the HTML source must be
< and to display the right angle bracket (>) the HTML source must be
>. To display the ampersand (&), the HTML source must be &.

å To make the changes required to correctly display the angle bracket
and ampersand characters

1. Add to HTMLTokenVisitor a private non-static method called
FilteredWrite that returns void and expects a single parameter of type
IToken called token.

This method will create a string called dst from token and iterate through
each character in dst, applying the transformations described above. The
code will look as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 private void FilteredWrite(IToken token)
 {
 string src = token.ToString();
 for (int i = 0; i != src.Length; i++) {
 string dst;
 switch (src[i]) {
 case '<' :
 dst = "<"; break;
 case '>' :
 dst = ">"; break;
 case '&' :
 dst = "&"; break;
 default :
 dst = new string(src[i], 1); break;
 }
 Console.Write(dst);
 }
 }
}

2. Change the definition of HTMLTokenVisitor.Visit(ICommentToken) to
use the new FilteredWrite method instead of Console.Write, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ICommentToken token)
 {
 FilteredWrite(token);
 }
 ...
}

 Module 10: Inheritance in C# 63

3. Change the definition of HTMLTokenVisitor.Visit(IOtherToken) to use
the new FilteredWrite method instead of Console.Write, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(IOtherToken token)
 {
 FilteredWrite(token);
 }
 ...
}

4. Save your work.

5. Compile the program and correct any errors.

6. Re-create the token.html file from the token.cs source file from the
command line as before:

generate token.cs > token.html

7. Open token.html in Internet Explorer and verify that the angle bracket and
ampersand characters are now displayed correctly.

å To add color comments to the HTML file

1. Use Notepad to open the code_style.css style sheet in the install folder\
Labs\Lab10\Starter\ColorTokeniser \bin\debug folder.

The cascading style sheet file called code_style.css will be used to add color
to the HTML file. This file has already been created for you. The following
is an example of its contents:

...
SPAN.LINE_NUMBER
{
 background-color: white;
 color: gray;
}
...
SPAN.COMMENT
{
 color: green;
 font-style: italic;
}

The HTMLTokenVisitor.Visit(ILineStartToken) method already uses
this style sheet:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ILineStartToken line)
 {
 Console.Write("");
 Console.Write("{0,3}", line.Number());
 Console.Write("");
 }
 ...
}

64 Module 10: Inheritance in C#

Notice that this method writes the words “span” and “line_number,” and
that the style sheet contains an entry for SPAN.LINE_NUMBER.

2. Change the body of HTMLTokenVisitor.Visit(ICommentToken) so that
it takes the following pattern:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(ICommentToken token)
 {
 Console.Write("");
 FilteredWrite(token);
 Console.Write("");
 }
 ...
}

3. Save your work.

4. Compile the program and correct any errors.

5. Re-create the token.html file from the token.cs source file as before:

generate token.cs > token.html

6. Open token.html in Internet Explorer.

Verify that the source file comments are now green and are italicized.

 Module 10: Inheritance in C# 65

å To add color keywords to the HTML file

1. Notice that the code_style.css file contains the following entry:

...
SPAN.KEYWORD
{
 color: blue;
}
...

2. Change the body of HTMLTokenVisitor.Visit(IKeywordToken) to use
the style specified in the style sheet, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 public override void Visit(IKeywordToken token)
 {
 Console.Write("");
 FilteredWrite(token);
 Console.Write("");
 }
 ...
}

3. Save your work.

4. Compile the program and correct any errors.

5. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

6. Open token.html in Internet Explorer and verify that the keywords are now
in blue.

66 Module 10: Inheritance in C#

å To refactor the Visit methods to eliminate duplication

1. Notice the duplication in the two Visit methods. That is, both methods write
span strings to the console.

You can refactor the Visit methods to avoid this duplication. Define a new
private non-static method called SpannedFilteredWrite that returns void
and expects two parameters, a string called spanName and an IToken
called token . The body of this method will contain three statements. The
first statement will write the span string to the console by using the
spanName parameter. The second statement will call the FilteredWrite
method, passing token as the argument. The third statement will write the
closing span string to the console. The code will look as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 private void SpannedFilteredWrite(string spanName,
ÊIToken token)
 {
 Console.Write("", spanName);
 FilteredWrite(token);
 Console.Write("");
 }
 ...
}

2. Change HTMLTokenVisitor.Visit(ICommentToken) to use this new
method, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(ICommentToken token)
 {
 SpannedFilteredWrite("comment", token);
 }
 ...
}

3. Change HTMLTokenVisitor.Visit(IKeywordToken) to use this new
method, as follows:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(IKeywordToken token)
 {
 SpannedFilteredWrite("keyword", token);
 }
 ...
}

 Module 10: Inheritance in C# 67

4. Change the HTMLTokenVisitor.Visit(IIdentifierToken) method body so
that it calls the SpannedFilteredWrite method. You must do this because
identifier tokens also have an entry in the code_style.css file:

public class HTMLTokenVisitor : NullTokenVisitor
{
 ...
 public override void Visit(IIdentifierToken token)
 {
 SpannedFilteredWrite("identifier", token);
 }
 ...
}

5. Save your work.

6. Compile the program and correct any errors.

7. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

8. Open token.html in Internet Explorer.

Verify that the comments are still green and that the keywords are still blue.

å To implement HTMLTokenVisitor directly from ITokenVisitor
1. Open the html_token_visitor.cs file

2. Change the code so that the HTMLTokenVisitor class derives from the
ITokenVisitor interface. Because you have implemented nearly all of the
Visit methods in HTMLTokenVisitor, it no longer needs to inherit from
the NullTokenVisitor abstract class (which provides a default empty
implementation of every method in ITokenVisitor). It can be derived
directly from the ITokenVisitor interface.

68 Module 10: Inheritance in C#

The class should look as follows:

public class HTMLTokenVisitor : ITokenVisitor
{
 ...
}

3. Save your work.

4. Compile the program.

There will be many errors! The problem is that the Visit methods in
HTMLTokenVisitor are still qualified as override, but you cannot override
an operation in an interface.

5. Remove the keyword override from every Visit method definition.

6. Compile the program.

There will still be an error. The problem this time is that
HTMLTokenVisitor does not implement the Visit(IDirectiveToken)
operation inherited from its ITokenVisitor interface. Previously,
HTMLTokenVisitor inherited an empty implementation of this operation
from NullTokenVisitor.

7. In HTMLTokenVisitor, define a public non-static method called Visit that
returns void and expects a single parameter of type IDirectiveToken called
token. This will fix the implementation problem.

The body of this method will call the SpannedFilteredWrite method,
passing it two parameters: the string literal “directive” and the variable
token.

public class HTMLTokenVisitor : ITokenVisitor
{
 ...
 public void Visit(IDirectiveToken token)
 {
 SpannedFilteredWrite("directive", token);
 }
 ...
}

8. Save your work.

9. Compile the program and correct any errors.

10. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

11. Open token.html in Internet Explorer.

Verify that the comments are still green and that the keywords are still blue.

 Module 10: Inheritance in C# 69

å To prevent the use of HTMLTokenVisitor as a base class

1. Declare HTMLTokenVisitor as a sealed class.

Given that the methods of HTMLTokenVisitor are no longer virtual, it
makes sense for HTMLTokenVisitor to be declared as a sealed class. This
is shown in the following code:

public sealed class HTMLTokenVisitor : ITokenVisitor
{
 ...
}

2. Compile the program and correct any errors.

3. Re-create the token.html file from the token.cs source file by using the
generate batch file as before:

generate token.cs > token.html

4. Open token.html in Internet Explorer, and verify that the comments are still
green and that the keywords are still blue.

70 Module 10: Inheritance in C#

Exercise 2
Converting a C# Source File into a Color Syntax HTML File

In this exercise, you will examine a second application that uses the same C#
tokenizer framework used in Exercise 1.

Scenario
In this application, the ColorTokenVisitor class derives from the
ITokenVisitor interface. The Visit methods of this class write colored tokens
to a RichTextBox inside a Microsoft Windows® Forms application. The
collaborating classes form the following hierarchy:

å To familiarize yourself with the interfaces

1. Open the ColorSyntaxApp.sln project in the install folder\
Labs\Lab10\Solution\ColourSyntaxApp folder.

2. Study the contents of the two .cs files. Notice that the ColorTokenVisitor
class is very similar to the HTMLTokenVisitor class that you created in
Exercise 1. The main difference is that ColorTokenVisitor writes the color
tokens to a RichTextBox form component rather than to the console.

3. Build the project.

4. Run the application.

a. Click Open File.

b. In the dialog box that appears, click a .cs source file.

c. Click Open.

The contents of the selected .cs source file will appear, in color.

 Module 10: Inheritance in C# 71

Review

n Deriving Classes

n Implementing Methods

n Using Sealed Classes

n Using Interfaces

n Using Abstract Classes

1. Create a class called Widget that declares two public methods. Create both
methods so that they return void and so that they do not use parameters. Call
the first method First, and declare it as virtual. Call the second method
Second, and do not declare it as virtual. Create a class called FancyWidget
that extends Widget, overriding the inherited First method and hiding the
inherited Second method.

72 Module 10: Inheritance in C#

2. Create an interface called IWidget that declares two methods. Create both
methods so that they return void and so that they do not use parameters. Call
the first method First, and call the second method Second. Create a class
called Widget that implements IWidget . Implement First as virtual, and
implement Second explicitly.

3. Create an abstract class called Widget that declares a protected abstract
method called First that returns void and does not use parameters. Create a
class called FancyWidget that extends Widget, overriding the inherited
First method.

 Module 10: Inheritance in C# 73

4. Create a sealed class called Widget that implements the IWidget interface
that you created in question 2. Create Widget so that it implements both
inherited methods explicitly.

THIS PAGE INTENTIONALLY LEFT BLANK

