

Contents

Overview 1

Using Internal Classes, Methods, and Data 2
Using Aggregation 11

Lab 11.1: Specifying Internal Access 22

Using Namespaces 28

Using Modules and Assemblies 49

Lab 11.2: Using Namespaces and
Assemblies 63

Review 69

Module 11: Aggregation,
Namespaces, and
Advanced Scope

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any rea l individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BackOffice, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN,
PowerPoint, Visual Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media
are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 11: Aggregation, Namespaces, and Advanced Scope 1

Overview

n Using Internal Classes, Methods, and Data

n Using Aggregation

n Using Namespaces

n Using Modules and Assemblies

In this module, you will learn how to use the internal access modifier to make
code accessible at the component or assembly level. Internal access enables you
to share access to classes and their members in a way that is similar to the
friendship concept in C++ and Microsoft® Visual Basic®. You can specify an
access level for a group of collaborating classes rather than for an individual
class.

Creating well-designed individual classes is an important part of object-oriented
programming, but projects of any size require you to create logical and physical
structures that are larger than individual classes. You will learn how to group
classes together into larger, higher-level classes. You will also learn how to use
namespaces to allow you to logically group classes together inside named
spaces and to help you to create logical program structures beyond individual
classes.

Finally, you will learn how to use assemblies to physically group collaborating
source files together into a reusable, versionable, and deployable unit.

After completing this module, you will be able to:

n Use internal access to allow classes to have privileged access to each other.

n Use aggregation to implement powerful patterns such as Factories.

n Use namespaces to organize classes.

n Create simple modules and assemblies.

2 Module 11: Aggregation, Namespaces, and Advanced Scope

u Using Internal Classes, Methods, and Data

n Why Use Internal Access?

n Internal Access

n Syntax

n Internal Access Example

Access modifiers define the level of access that certain code has to class
members such as methods and properties. You need to apply the desired access
modifier to each member, otherwise the default access type is implied. You can
apply one of four access modifiers, as shown in the following table.

Access modifier Description

public A public member is accessible from anywhere. This is the least

restrictive access modifier.

protected A protected member is accessible from within the class and all
derived classes. No access from the outside is permitted.

private A private member is accessible only from within the same class.
Not even derived classes can access it.

internal An internal member is accessible from within any part of the
same .NET assembly. You can think of it as public at the
assembly level and private from outside the assembly.

protected internal An internal protected member is accessible from within the
current assembly or from within types derived from the
containing class.

In this section, you will learn how to use internal access to specify accessibility
at the assembly level instead of at the class level. You will learn why internal
access is necessary, and you will learn how to declare internal classes, internal
methods, and internal data. Finally, you will see some examples that use
internal access.

 Module 11: Aggregation, Namespaces, and Advanced Scope 3

Why Use Internal Access?

n Small Objects Are Not Very Useful on Their Own

n Objects Need to Collaborate to Form Larger Objects

n Access Beyond the Individual Object Is Required

public
internal
private

Adding More Objects
Creating well-designed object-oriented programs is not easy. Creating large
well-designed object-oriented programs is harder still. The often-repeated
advice is to make each entity in the program do and be one thing and one thing
only, to make each entity small, focused, and easy to use.

However, if you follow that advice, you will create many classes instead of just
a few classes. It is this insight that helps to make sense of the initially confusing
advice from Grady Booch: “If your system is too complex, add more objects.”

Systems are complex if they are hard to understand. Large classes are harder to
understand than smaller classes. Breaking a large class into several smaller
classes helps to make the overall functionality easier to discern.

4 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Object Relationships to Form Object Hierarchies
The power of object orientation is in the relationships between the objects, not
in the individual objects. Objects are built from other objects to form object
hierarchies. Collaborating objects form larger entities.

Limit Access to the Object Hierarchy?
There is, however, a potential problem. The public and private access
modifiers do not fit seamlessly into the object hierarchy model:

n Public access is unlimited.

You sometimes need to limit access to just those objects in the hierarchy.

n Private access is limited to the individual class.

You sometimes need to extend access to related classes.

You often need an access level that is somewhere in between these two
extremes to limit access to the various objects in a particular collaboration.
Protected access is not a sufficient answer because the protected modifier
specifies access at the class level in an inheritance hierarchy.

In a well-designed object-oriented project, object relationships should be much
more common than inheritance. You need a mechanism that restricts access to
the objects in a given object hierarchy.

 Module 11: Aggregation, Namespaces, and Advanced Scope 5

Internal Access

n Comparing Access Levels

l Public access is logical

l Private access is logical

l Internal access is physical

internal

Comparing Access Levels
It is important to realize that internal access is different from public or private
access:

n Public access is logical.

The physical deployment of a public class (or a public class member) does
not affect its accessibility. Regardless of how you deploy a public class, it
remains public.

n Private access is also logical.

The physical deployment of a private class (or a private class member) does
not affect its accessibility. Regardless of how you deploy a private class, it
remains private.

n Internal access is physical.

The physical deployment of an internal class (or an internal class member)
does affect its accessibility. You can deploy an internal class directly in an
executable file. In this case, the internal class is visible only to its containing
compilation unit. Alternatively, you can deploy an internal class in an
assembly, which you will learn about later in this module. You can share
this assembly between several executable files, but internal access is still
limited to the assembly. If an executable file uses several assemblies, each
assembly has its own internal access.

6 Module 11: Aggregation, Namespaces, and Advanced Scope

Comparing Internal Access to Friendship
In languages such as C++ and Visual Basic, you can use friendship to grant to
the private members of one class access to another class. If class A grants
friendship to class B, the methods of class B can access the private members of
class A. Such friendship creates a strong dependency from B to A. In some
ways, the dependency is even stronger than inheritance. After all, if B were
derived from A instead, it would not have access to the private members of A.
To counteract this strong dependency, friendship has a few built-in safety
restrictions:

n Friendship is closed.

If X needs to access the private members of Y, it cannot grant itself
friendship to Y. In this case, only Y can grant friendship to X.

n Friendship is not reflexive.

If X is a friend of Y, that does not mean that Y is automatically a friend of X.

Internal access is different from friendship:

n Internal access is open.

You can compile a C# class (in a source file) into a module and then add the
module to an assembly. In this way, a class can grant itself access to the
internals of the assembly that other classes have made available.

n Internal access is reflexive.

If X has access to the internals of Y, then Y has access to the internals of X.
Note also that X and Y must be in the same assembly.

 Module 11: Aggregation, Namespaces, and Advanced Scope 7

Syntax

internal class <outername>
{

internal class <nestedname> { ... }
internal <type> field;
internal <type> Method() { ... }

protected internal class <nestedname> { ... }
protected internal <type> field;
protected internal <type> Method() { ... }

}

internal class <outername>
{

internal class <nestedname> { ... }
internal <type> field;
internal <type> Method() { ... }

protected internal class <nestedname> { ... }
protected internal <type> field;
protected internal <type> Method() { ... }

}

protected internal means protected or internalprotected internal means protected or internal

When you define a class as internal, you can only access the class from the
current assembly. When you define a class as protected internal, you can access
the class from the current assembly or from types derived from the containing
class.

Non-Nested Types
You can declare types directly in the global scope or in a namespace as public
or internal but not as protected or private. The following code provides
examples:

public class Bank { ... } // Okay
internal class Bank { ... } // Okay
protected class Bank { ... } // Compile-time error
private class Bank { ... } // Compile-time error

namespace Banking
{
 public class Bank { ... } // Okay
 internal class Bank { ... } // Okay
 protected class Bank { ... } // Compile-time error
 private class Bank { ... } // Compile-time error
}

8 Module 11: Aggregation, Namespaces, and Advanced Scope

When you declare types in the global scope or in a namespace and do not
specify an access modifier, the access defaults to internal:

/*internal */ class Bank { ... }

namespace Banking
{
 /*internal*/ class Bank { ... }
 ...
}

Nested Types
When you nest classes inside other classes, you can declare them with any of
the five types of accessibility, as shown in the following code:

class Outer
{
 public class A { ... }
 protected class B { ... }
 protected internal class C { ... }
 internal class D { ... }
 private class E { ... }
}

You cannot declare any member of a struct with protected or protected internal
accessibility because deriving from a struct will produce a compile-time error.
The following code provides examples:

public struct S
{
 protected int x; // Compile-time error
 protected internal int y; // Compile-time error
}

When you declare a protected internal member, the order of the keywords
protected and internal is not significant. However, protected internal is
recommended. The following code provides an example:

class BankAccount
{
 // Both characters are allowed
 protected internal BankAccount();
 internal protected BankAccount(decimal openingBalance);
}

You cannot use access modifiers with destructors, so the following
example will produce a compile-time error:

class BankAccount
{
 internal ~BankAccount() { ... } // Compile-time-error
}

Tip

Note

 Module 11: Aggregation, Namespaces, and Advanced Scope 9

Internal Access Example

public interface IBankAccount { ... }

internal abstract class CommonBankAccount { ... }

internal class DepositAccount: CommonBankAccount,
IBankAccount { ... }

public class Bank
{

public IBankAccount OpenAccount()
{

return new DepositAccount();
}

}

public interface IBankAccount { ... }

internal abstract class CommonBankAccount { ... }

internal class DepositAccount: CommonBankAccount,
IBankAccount { ... }

public class Bank
{

public IBankAccount OpenAccount()
{

return new DepositAccount();
}

}

To learn how to use internal access, consider the following example.

Scenario
In the banking example on the previous slide, there are three classes and an
interface. The classes and interface are shown in the same source file for the
sake of illustration. They could easily be in four separate source files. These
four types would be physically compiled into a single assembly.

The IBankAccount interface and the Bank class are public and define how the
assembly is used from the outside. The CommonBankAccount class and the
DepositAccount class are implementation-only classes that are not intended to
be used from outside the assembly and hence are not public. (Note that
Bank.OpenAccount returns an IbankAccount.) However, they are not marked
as private.

Note that the CommonBankAccount abstract base class is marked internal
because the designer anticipates that new kinds of bank accounts might be
added to the assembly in the future, and these new classes might reuse this
abstract class. The following code provides an example:

internal class CheckingAccount:
 CommonBankAccount,
 IBankAccount
{
 ...
}

10 Module 11: Aggregation, Namespaces, and Advanced Scope

The DepositAccount class is slightly different. You can alternatively nest it
inside the Bank class and make it private, as follows:

public class Bank
{
 ...
 private class DepositAccount:
 CommonBankAccount,
 IBankAccount
 {
 ...
 }
}

In the code on the slide, the access for the DepositAccount class is marked as
internal, which is less restrictive than private access. You can achieve design
flexibility by making this slight compromise because internal access provides
the following:

n Logical separation

DepositAccount can now be declared as a separate non-nested class. This
logical separation makes both classes easier to read and understand.

n Physical separation

DepositAccount can now be placed in its own source file. This physical
separation means that DepositAccount maintenance will not affect other
classes and can be performed at the same time as maintenance to other
classes.

 Module 11: Aggregation, Namespaces, and Advanced Scope 11

u Using Aggregation

n Objects Within Objects

n Comparing Aggregation to Inheritance

n Factories

n Example Factory

In this section, you will learn how to use aggregation to group objects together
to form an object hierarchy. Aggregation specifies a relationship between
objects, not classes. Aggregation offers the potential for creating reusable object
configurations. Many of the most useful configurations have been documented
as patterns. You will learn how to use the Factory pattern.

12 Module 11: Aggregation, Namespaces, and Advanced Scope

Objects Within Objects

n Complex Objects Are Built from Simpler Objects

n Simpler Objects Are Parts of Complex Whole Objects

n This Is Called Aggregation

CarCarWholeWhole

PartPart EngineEngineChassisChassis WheelWheel

1 41

Aggregation represents a whole/part object relationship. You can see the
Unified Modeling Language (UML) notation for aggregation in the slide. The
diamond is placed on the “whole” class and a line links the whole to the “part”
class. You can also place on an aggregation relationship a number that specifies
the number of parts in the whole. For example, the slide depicts in UML that a
car has one chassis, one engine, and four wheels. Informally, aggregation
models the “has-a” relationship.

The words aggregation and composition are sometimes used as though they are
synonyms. In UML, composition has a more restrictive meaning than
aggregation:

n Aggregation

Use aggregation to specify a whole/part relationship in which the lifetimes
of the whole and the parts are not necessarily bound together, the parts can
be traded for new parts, and parts can be shared. Aggregation in this sense is
also known as aggregation by reference.

n Composition

Use composition to specify a whole/part relationship in which the lifetimes
of the whole and the parts is bound together, the parts cannot be traded for
new parts, and the parts cannot be shared. Composition is also known as
aggregation by value.

 Module 11: Aggregation, Namespaces, and Advanced Scope 13

In an aggregation, the “whole class” is really just a class that is used to group
and name the parts. In a sense, the whole class does not really exist at all. What
is car? It is just the name that you use to describe an aggregation of specific
parts that are arranged in a specific configuration. But it is much easier to just
say car! In other cases, the whole class is conceptual— a family is an
aggregation of people.

In programming, it is common for the whole class to simply forward the
method calls to the appropriate part. This is called delegation. Aggregated
objects form layered delegation hierarchies. Occasionally these hierarchies are
referred to as assemblies (but the word assemblies can also refer to a
Microsoft .NET physical assembly, as will be explained later in this module).

14 Module 11: Aggregation, Namespaces, and Advanced Scope

Comparing Aggregation to Inheritance

n Aggregation

l Specifies an object relationship

l A weak whole-to-part dependency

l Dynamically flexible

n Inheritance

l Specifies a class relationship

l A strong derived-to-base dependency

l Statically inflexible

PartPart

WholeWhole

BaseBase

DerivedDerived

Aggregation and inheritance both provide ways to create larger classes from
smaller classes, but they do this in completely different ways.

Aggregation
You can use aggregation with the following characteristics to create larger
classes from smaller classes:

n An object relationship

Aggregation specifies a relationship at the object level. The access control
of the part can be public or non-public. The multiplicity can vary for
different objects. For example, a computer is an aggregation of a monitor, a
keyboard, and a CPU. However, some computers have two monitors (for
remote debugging, for example). Some banks contain only a few bank
account objects. More successful banks contain many more bank account
objects. Aggregation can handle this variation at the object level because
aggregation is an object-level relationship.

n Weak dependency from the whole to the part

With aggregation, the methods of the part do not automatically become
methods of the whole. A change to the part does not automatically become a
change to the whole.

n Dynamically flexible

The number of bank accounts contained in a bank can increase and decrease
as bank accounts are opened and closed. If the whole object contains a
reference to a part object, then at run time the actual object that this
reference refers to can be derived from the part. The reference can even be
dynamically rebound to objects of different derived types. Aggregation is a
powerful and flexible structuring mechanism.

 Module 11: Aggregation, Namespaces, and Advanced Scope 15

Inheritance
You use inheritance to create new classes from existing classes. The
relationship between the existing class and the new class that extends it has the
following characteristics:

n A class relationship

Inheritance specifies a relationship at the class level. In C#, inheritance can
only be public. It is impossible to specify the multiplicity for an inheritance.
Multiplicity specifies the number of objects participating in an object
relationship. But inheritance is fixed at the class level. There is no variation
at the object level.

n Strong dependency from the derived class to the base class.

Inheritance creates a strong derived-to-base class dependency. The methods
of the base class do automatically become methods of the derived class. A
change to the base class does automatically become a change to all derived
classes.

n Statically inflexible

If a class is declared to have a particular base class, it always has that
particular base class (and can only specify the base class as a base cla ss
once). Compare this to aggregation, in which the part reference can be
dynamically rebound to objects of different derived classes. An object can
never change its type. This inflexibility can create problems. For instance,
consider a simple inheritance hierarchy with Employee as a base class and
Manager and Programmer as parallel derived classes:

class Employee { ... }
class Manager: Employee { ... }
class Programmer: Employee { ... }

In this example, a Programmer object cannot be promoted to a Manager
object!

16 Module 11: Aggregation, Namespaces, and Advanced Scope

Factories

n Creation Is Often Complex and Restricted

n Many Objects Are Made Only in Specialist Factories

n The Factory Encapsulates the Complex Creation

n Factories Are Useful Patterns When Modelling Software

Newcomers to object orientation often ask how to create virtual constructors.
The answer is that you cannot. A base class constructor is not inherited in a
derived class and so cannot be virtual.

Analogy
However, the goal of abstracting away the details and responsibility of creation
is a valid one. It happens in life all the time. For example, you cannot just create
a phone. Creating a phone is a complicated process that involves the acquisition
and configuration of all of the parts that make up a phone. Sometimes creation
is illegal: you are not allowed to create your own money, for example. In these
cases, the knowledge and responsibility for creation is delegated to another
object— a factory— whose main responsibility is to create the product objects.

 Module 11: Aggregation, Namespaces, and Advanced Scope 17

Encapsulating Construction
In software programs, you can also abstract away the details and responsibility
of creation by encapsulating the construction of objects. Instead of attempting
to create a virtual constructor in which delegation is automatic and moves down
the class hierarchy, you can use manual delegation across an object hierarchy:

class Product
{
 public void Use() { ... }
 ...
 internal Product() { ... }
}

class Factory
{
 public Product CreateProduct()
 {
 return new Product();

}

In this example, the CreateProduct method is known as a Factory Method
pattern. (This definition is from Design Patterns: Elements of Reusable Object-
Oriented Software, by E. Gamma, R. Helm, R. Johnson, and J. Vlissides.) It is a
method of a factory that creates a product.

Encapsulating Destruction
Abstracting away the details and responsibility of destroying an object is also
valid and useful. And again, it happens in real life. For example, if you open a
bank account at a bank, you cannot destroy the bank account yourself. Only the
bank can destroy the account. To provide another example, if a factory creates a
product, the environmentally responsible way to destroy the product is to return
it to the factory. The factory might be able to recycle some of the product’s
parts. The following code provides an example:

class Factory
{
 public Product CreateProduct() { ... }
 public void DestroyProduct(Product toDestroy) { ... }
 ...
}

In this example, the DestroyProduct method is known as a Disposal Method,
another design pattern.

Using the Problem Vocabulary
In the preceding example, the Factory Method is called CreateProduct, and the
Disposal Method is called DestroyProduct. In a real factory class, name these
methods to correspond to the vocabulary of the factory. For example, in a Bank
class (a factory for bank accounts), you might have a Factory Method called
OpenAccount and a Disposal Method called CloseAccount.

18 Module 11: Aggregation, Namespaces, and Advanced Scope

Factory Example

public class Bank
{

public BankAccount OpenAccount()
{

BankAccount opened = new BankAccount();
accounts[opened.Number()] = opened;
return opened;

}
private Hashtable accounts = new Hashtable();

}
public class BankAccount
{

internal BankAccount() { ... }
public long Number() { ... }
public void Deposit(decimal amount) { ... }

}

public class Bank
{

public BankAccount OpenAccount()
{

BankAccount opened = new BankAccount();
accounts[opened.Number()] = opened;
return opened;

}
private Hashtable accounts = new Hashtable();

}
public class BankAccount
{

internal BankAccount() { ... }
public long Number() { ... }
public void Deposit(decimal amount) { ... }

}

To learn how to use the Factory pattern, consider an example of publicly
useable, non-creatable objects being made and aggregated in a factory.

Scenario
In this example, the BankAccount class is public and has public methods. If
you could create a BankAccount object, you could use its public methods.
However, you cannot create a BankAccount object because its constructor is
not public. This is perfectly reasonable model. After all, you cannot just create a
real bank account object. If you want a bank account, you need to go to a bank
and ask a teller to open one. The bank creates the account for you.

This is exactly the model that the above code depicts. The Bank class has a
public method called OpenAccount, the body of which creates the
BankAccount object for you. In this case, the Bank and the BankAccount are
in the same source file, and so will inevitably become part of the same
assembly. Assemblies will be covered later in this module. However, even if
the Bank class and the BankAccount classes were in separate source files, they
could (and would) still be deployed in the same assembly, in which case the
Bank would still have access to the internal BankAccount constructor. Notice
also that the Bank aggregates the BankAccount objects that it creates. This is
very common.

 Module 11: Aggregation, Namespaces, and Advanced Scope 19

Design Alternatives
To restrict creation of BankAccount objects further, you can make
BankAccount a private nested class of Bank with a public interface. The
following code provides an example:

using System.Collections;

public interface IAccount
{
 long Number();
 void Deposit(decimal amount);
 ...
}

public class Bank
{
 public IAccount OpenAccount()
 {
 IAccount opened = new DepositAccount();
 accounts[opened.Number()] = opened;
 return opened;
 }

 private readonly Hashtable accounts = new Hashtable();

 private sealed class DepositAccount: IAccount
 {
 public long Number()
 {
 return number;
 }

 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 ...
 // Class state
 private static long NextNumber()
 {
 return nextNumber++;
 }
 private static long nextNumber = 123;

 // Object state
 private decimal balance = 0.0M;
 private readonly long number = NextNumber();
 }
}

20 Module 11: Aggregation, Namespaces, and Advanced Scope

Alternatively, you can make the entire BankAccount concept private, and
reveal only the bank account number, as shown in the following code:

using System.Collections;

public sealed class Bank
{
 public long OpenAccount()
 {
 IAccount opened = new DepositAccount();
 long number = opened.Number();
 accounts[number] = opened;
 return number;
 }

 public void Deposit(long accountNumber, decimal amount)
 {
 IAccount account = (IAccount)accounts[accountNumber];
 if (account != null) {
 account.Deposit(amount);
 }
 }

 //...

 public void CloseAccount(long accountNumber)
 {
 IAccount closing = (IAccount)accounts[accountNumber];
 if (closing != null) {
 accounts.Remove(accountNumber);
 closing.Dispose();
 }
 }

 private readonly Hashtable accounts = new Hashtable();

 private interface IAccount
 {
 long Number();
 void Deposit(decimal amount);
 void Dispose();
 //...
 }

 private sealed class DepositAccount: IAccount
 {
 public long Number()
 {
 return number;
 }

 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 (Code continued on following page.)

 Module 11: Aggregation, Namespaces, and Advanced Scope 21

 public void Dispose()
 {
 this.Finalize();
 System.GC.SuppressFinalize(this);
 }

 protected override void Finalize()
 {
 //...
 }

 private static long NextNumber()
 {
 return nextNumber++;
 }
 private static long nextNumber = 123;

 private decimal balance = 0.0M;
 private readonly long number = NextNumber();
 }
}

22 Module 11: Aggregation, Namespaces, and Advanced Scope

Lab 11.1: Specifying Internal Access

Objectives
After completing this lab, you will be able to:

n Specify internal access for classes.

n Specify internal access for methods.

Prerequisites
Before working on this lab, you must be able to:

n Create classes.

n Use constructors and destructors.

n Use private and public access modifiers.

Estimated time to complete this lab: 30 minutes

 Module 11: Aggregation, Namespaces, and Advanced Scope 23

Exercise 1
Creating a Bank

In this exercise, you will:

1. Create a new class called Bank that will act as the point of creation (a
factory) for BankAccount objects.

2. Change the BankAccount constructors so that they use internal access.

3. Add to the Bank class overloaded CreateAccount factory methods that the
customers can use to access accounts and to request the creation of accounts.

4. Make the Bank class “singleton-like” by making all of its methods static
(and public) and adding a private constructor to prevent instances of the
Bank class from being created accidentally.

5. Store BankAccounts in Bank by using a Hashtable
(System.Collections.Hashtable).

6. Use a simple harness to test the functionality of the Bank class.

å To create the Bank class

1. Open the Bank.sln project in the install folder\Labs\Lab11\
Exercise 1\Starter \Bank folder.

2. Review the four BankAccount constructors in the BankAccount.cs file.

You will create four overloaded CreateAccount methods in the Bank class
that will call each of these four constructors respectively.

3. Open the Bank.cs file and create a public non-static method of Bank called
CreateAccount that expects no parameters and returns a BankAccount.

The body of this method should return a newly created BankAccount object
by calling the BankAccount constructor that expects no parameters.

4. Add the following statements to Main in the CreateAccount.cs file. This
code tests your CreateAccount method.

Console.WriteLine("Sid's Account");
Bank bank = new Bank();
BankAccount sids = bank.CreateAccount();
TestDeposit(sids);
TestWithdraw(sids);
Write(sids);
sids.Dispose();

5. In BankAccount.cs, change the accessibility of the BankAccount
constructor that expects no parameters from public to internal.

6. Save your work.

7. Compile the program, correct any errors, and run the program.

Verify that Sid's bank account is created and that the deposit and withdrawal
appear in the transaction list if successful.

24 Module 11: Aggregation, Namespaces, and Advanced Scope

å To make the Bank responsible for closing accounts

Real bank accounts never leave their bank. Instead, bank accounts remain
internal to their bank, and customers gain access to their accounts by using their
unique bank account numbers. In the next few steps, you will modify the
Bank.CreateAccount method in Bank.cs to reflect this.

1. Add a private static field called accounts of type Hashtable to the Bank
class. Initialize it with a new Hashtable object. The Hashtable class is
located inside the System.Collections namespace, so you will need an
appropriate using-directive.

2. Modify the Bank.CreateAccount method so that it returns the
BankAccount number (a long) and not the BankAccount itself. Change the
body of the method so that it stores the newly created BankAccount object
in the accounts Hashtable, using the bank account number as the key.

3. Add a public non-static CloseAccount method to the Bank class.

This method will expect a single parameter of type long (the number of the
account being closed) and will return a bool. The body of this method will
access the BankAccount object from the accounts Hashtable, using the
account number parameter as an indexer. It will then remove the
BankAccount from the accounts Hashtable by calling the Remove method
of the Hashtable class, and then dispose of the closing account by calling
its Dispose method. The CloseAccount method will return true if the
account number parameter successfully accesses a BankAccount inside the
accounts Hashtable; otherwise it will return false.

At this point, the Bank class should look as follows:

using System.Collections;

public class Bank
{
 public long CreateAccount()
 {
 BankAccount newAcc = new BankAccount();
 long accNo = newAcc.Number();
 accounts[accNo] = newAcc;
 return accNo;
 }
 public bool CloseAccount(long accNo)
 {
 BankAccount closing = (BankAccount)accounts[accNo];
 if (closing != null) {
 accounts.Remove(accNo);
 closing.Dispose();
 return true;
 }
 else {
 return false;
 }
 }
 private Hashtable accounts = new Hashtable();
}

4. Change the BankAccount.Dispose method in BankAccount.cs so that it has
internal rather than public access.

 Module 11: Aggregation, Namespaces, and Advanced Scope 25

5. Save your work.

6. Compile the program.

It will not compile. The test harness in CreateAccount.Main now fails
because Bank.CreateAccount returns a long rather than a BankAccount.

7. Add a public non-static method called GetAccount to the Bank class.

It will expect a single parameter of type long that specifies a bank account
number. It will return the BankAccount object stored in the accounts
Hashtable that has this account number (or null if there is no account with
this number). The BankAccount object can be retrieved by using the
account number as an indexer parameter on ac counts as shown below:

public class Bank
{
 public BankAccount GetAccount(long accNo)
 {
 return (BankAccount)accounts[accNo];
 }
}

8. Change Main in the CreateAccount.cs test harness so that it uses the new
Bank methods, as follows:

public class CreateAccount
{
 static void Main ()
 {
 Console.WriteLine("Sid's Account");
 Bank bank = new Bank();
 long sidsAccNo = bank.CreateAccount();
 BankAccount sids = bank.GetAccount(sidsAccNo);
 TestDeposit(sids);
 TestWithdraw(sids);
 Write(sids);
 if (bank.CloseAccount(sidsAccNo)) {
 Console.WriteLine("Account closed");
 } else {
 Console.WriteLine("Something went wrong closing
Êthe account");
 }
}

9. Save your work.

10. Compile the program, correct any errors, and run the program. Verify that
Sid’s bank account is created and that the deposit and withdrawal appear in
the transaction list if they are successful.

26 Module 11: Aggregation, Namespaces, and Advanced Scope

å To make all BankAccount constructors internal

1. Find the BankAccount constructor that takes an AccountType and a
decimal as parameters. Change it so that its access is internal rather than
public.

2. Add another CreateAccount method to the Bank class.

It will be identical to the existing CreateAccount method except that it will
expect two parameters of type AccountType and decimal and will call the
BankAccount constructor that expects these two parameters.

3. Find the BankAccount constructor that expects a single AccountType
parameter. Change it so that its acc ess is internal rather than public.

4. Add a third CreateAccount method to the Bank class.

It will be identical to the two existing CreateAccount methods except that
it will expect one parameter of type AccountType and will call the
BankAccount constructor that expects this parameter.

5. Find the BankAccount constructor that expects a single decimal parameter.
Change it so that its access is internal rather than public.

6. Add a fourth CreateAccount method to the Bank class.

It will be identical to the three existing CreateAccount methods except that
it will expect one parameter of type decimal and will call the BankAccount
constructor that expects this parameter.

7. Save your work.

8. Compile the program and correct any errors.

 Module 11: Aggregation, Namespaces, and Advanced Scope 27

å To make the Bank class “singleton-like”

1. Change the four overloaded Bank.CreateAccount methods so that they are
static methods.

2. Change the Bank.CloseAccount method so that it is a static method.

3. Change the Bank.GetAccount method so that it is a static method.

4. Add a private Bank constructor to stop Bank objects from being created.

5. Modify CreateAccount.Main in CreateAccount.cs so that it uses the new
static methods and does not create a bank object, as shown in the following
code:

public class CreateAccount
{
 static void Main ()
 {
 Console.WriteLine("Sid's Account");
 long sidsAccNo = Bank.CreateAccount();
 BankAccount sids = Bank.GetAccount(sidsAccNo);
 TestDeposit(sids);
 TestWithdraw(sids);
 Write(sids);
 if (Bank.CloseAccount(sidsAccNo))
 Console.WriteLine("Account closed");
 else
 Console.WriteLine("Something went wrong closing the
Êaccount");
 }
}

6. Save your work.

7. Compile the program, correct any errors, and run the program. Verify that
Sid’s bank account is created and that the deposit and withdrawal appear in
the transaction list if they are successful.

8. Open a Command window and navigate to the install folder\
Labs\Lab11\Exercise 1\Starter\Bank folder. From the command prompt,
create the executable and run it by using the following code:

c:\> csc /out:createaccount.exe *.cs
c:\> dir
...
createaccount
...

9. From the command prompt, run the Intermediate Language Disassembler
(ILDASM), passing the name of the executable as a command-line
parameter, as follows:

c:\> ildasm createaccount.exe

10. Notice that the four classes and the enum are all listed.

11. Close ILDASM.

12. Close the Command window.

28 Module 11: Aggregation, Namespaces, and Advanced Scope

u Using Namespaces

n Scope Revisited

n Resolving Name Clashes

n Declaring Namespaces

n Fully Qualified Names

n Declaring using-namespace-directives

n Declaring using-alias-directives

n Guidelines for Naming Namespaces

In this section, you will learn about scope in the context of namespaces. You
will learn how to resolve name clashes by using namespaces. (Name clashes
occur when two or more classes in the same scope have the same name.) You
will learn how to declare and use namespaces. Finally, you will learn some
guidelines to follow when using namespaces.

 Module 11: Aggregation, Namespaces, and Advanced Scope 29

Scope Revisited

n The Scope of a Name Is the Region of Program Text in
Which You Can Refer to the Name Without Qualification

public class Bank
{

public class Account
{

public void Deposit(decimal amount)
{

balance += amount;
}
private decimal balance;

}
public Account OpenAccount() { ... }

}

public class Bank
{

public class Account
{

public void Deposit(decimal amount)
{

balance += amount;
}
private decimal balance;

}
public Account OpenAccount() { ... }

}

In the code in the slide, there are effectively four scopes:

n The global scope. Inside this scope there is a single member declaration: the
Bank class.

n The Bank class scope. Inside this scope there are two member declarations:
the nested class called Account and the method called OpenAccount. Note
that the return type of OpenAccount can be specified as Account and need
not be Bank.Account because OpenAccount is in the same scope as
Account.

n The Account class scope. Inside this scope there are two member
declarations: the method called Deposit and the field called balance.

n The body of the Account.Deposit method. This scope contains a single
declaration: the amount parameter.

30 Module 11: Aggregation, Namespaces, and Advanced Scope

When a name is not in scope, you cannot use it without qualification. This
usually happens because the scope in which the name was declared has ended.
However, it can also happen when the name is hidden. For example, a derived
class member can hide a base class member, as shown in the following code:

class Top
{
 public void M() { ... }
}
class Bottom: Top
{
 new public void M()
 {
 M(); // Recursion
 base.M(); // Needs qualification to avoid recursion
 ...
 }
}

A parameter name can hide a field name, as follows:

public struct Point
{
 public Point(int x, int y)
 {
 this.x = x; // Needs qualification
 this.y = y; // Needs qualification
 }
 private int x, y;
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 31

Resolving Name Clashes

n Consider a Large Project That Uses 1000s of Classes

n What If Two Classes Have the Same Name?

n Do Not Add Prefixes to All Class Names

// From Vendor A
public class Widget public class VendorAWidget
{ ... } { ... }

// From Vendor B
public class Widget public class VendorBWidget
{ ... } { ... }

// From Vendor A
public class Widget public class VendorAWidget
{ ... } { ... }

// From Vendor B
public class Widget public class VendorBWidget
{ ... } { ... }

ûû

How can you handle the potential problem of two classes in the same scope
having the same name? In C#, you can use namespaces to resolve name clashes.
C# namespaces are similar to C++ namespaces and Java packages. Internal
access is not dependent on namespaces.

32 Module 11: Aggregation, Namespaces, and Advanced Scope

Namespace Example
In the following example, the ability of each Method to call the internal Hello
method in the other class is determined solely by whether the classes (which are
located in different namespaces) are located in the same assembly.

// VendorA\Widget.cs file
namespace VendorA
{
 public class Widget
 {
 internal void Hello()
 {
 Console.WriteLine("Widget.Hello");
 }
 public void Method()
 {
 new VendorB.ProcessMessage().Hello();
 }
 }
}

// VendorB\ProcessMessage.cs file
namespace VendorB
{
 public class ProcessMessage
 {
 internal void Hello()
 {
 Console.WriteLine("ProcessMessage.Hello");
 }
 public void Method()
 {
 new VendorA.Widget().Hello();
 }
 }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 33

What Happens If You Do Not Use Namespaces?
If you do not use namespaces, name clashes are likely to occur. For example, in
a large project that has many small classes, you can easily make the mistake of
giving two classes the same name.

Consider a large project that is split into a number of subsystems and that has
separate teams working on the separate subsystems. Suppose the subsystems
are divided according to architectural services, as follows:

n User services

A means of allowing users to interact with the system.

n Business services

Business logic used to retrieve, validate, and manipulate data according to
specific business rules.

n Data services

A data store of some type and the logic to manipulate the data.

In this multiple-team project, it is highly likely that name clashes will occur.
After all, the three teams are working on the same project.

Using Prefixes As a Solution
Prefixing each class with a subsystem qualifier is not a good idea because the
names become:

n Long and unmanageable.

The class names quickly become very long. Even if this works at the first
level of granularity, it cannot keep on working without class names
becoming truly unwieldy.

n Complex.

The class names simply become harder to read. Programs are a form of
writing. People read programs. The easier a program is to read and
comprehend, the easier it is to maintain.

34 Module 11: Aggregation, Namespaces, and Advanced Scope

Declaring Namespaces

namespace VendorA
{

public class Widget
{ ... }

}

namespace VendorA
{

public class Widget
{ ... }

}

namespace VendorB
{

public class Widget
{ ... }

}

namespace VendorB
{

public class Widget
{ ... }

}

namespace Microsoft
{

namespace Office
{

...
}

}

namespace Microsoft
{

namespace Office
{

...
}

}

namespace Microsoft.Office
{

}

namespace Microsoft.Office
{

}

shorthandshorthandshorthand

You can use namespaces to show the logical structure of classes in a way that
can be interpreted by the compiler.

You need to specify the structure explicitly in the grammar of the language by
using namespaces. For example, instead of writing

public class VendorAWidget { ... }

you would write

namespace VendorA
{
 public class Widget { ... }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 35

Namespace Scope
A namespace, unlike a class, is an open scope. In other words, when you close a
namespace, you are allowed to subsequently reopen it, even in a different
source file, as shown in the following code:

// widget.cs
namespace VendorA
{
 public class Widget { ... }
}

// ProcessMessage.cs
namespace VendorA
{
 public class ProcessMessage { ... }
}

There are two important consequences of this:

n Multiple source files

Collaborating classes that are located in a common namespace can still be
implemented across several physical source files (typically one source file
per class) rather than in one large source file. Compare this to nested classes,
for which the definition of all nested classes and the outer class must be in
the same physical source file.

n Extensible namespaces

A new class can be added to a namespace without affecting any of the
classes already inside the namespace. In contrast, adding a new method to
an existing class requires the whole class to be recompiled.

Nesting Namespaces
You can nest a namespace inside another namespace, thus reflecting multiple
levels of organization, as follows:

namespace Outer
{
 namespace Inner
 {
 class Widget { ... }
 }
}

This example is somewhat verbose, and takes a lot of white space, braces, and
indentation. In C++, this syntax must be used. In C#, you can simplify it as
follows:

namespace Outer.Inner
{
 class Widget { ... }
}

36 Module 11: Aggregation, Namespaces, and Advanced Scope

Access Levels for Namespaces
Namespaces are implicitly public. You cannot include any access modifiers
when you declare a namespace, as is shown on the following code:

namespace Microsoft.Office // Okay
{
 ...
}

public namespace Microsoft.Office // Compile-time error
{
 ...
}

private namespace Microsoft.Office // Compile-time error
{
 ...
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 37

Fully Qualified Names

n A Fully Qualified Class Name Includes Its Namespace

n Unqualified Class Names Can Only Be Used in Scope

namespace VendorA
{

public class Widget { ... }
...

}
class Application
{

static void Main()
{

Widget w = new Widget();
VendorA.Widget w = new VendorA.Widget();

}
}

namespace VendorA
{

public class Widget { ... }
...

}
class Application
{

static void Main()
{

Widget w = new Widget();
VendorA.Widget w = new VendorA.Widget();

}
}

ûû üü

When you use a class inside its namespace, you can use its short name, referred
to as its unqualified name. However, if you use a class outside its namespace, it
is out of scope and you must refer to it by its fully qualified name.

Fully Qualified Names
When you create a class that is located inside a namespace, you must use its
fully qualified name if you want to use that class outside its namespace. The
fully qualified name of a class includes the name of its namespace.

In the example on the slide, the class Widget is embedded inside the VendorA
namespace. This means that you cannot use the unqualified name Widget
outside the VendorA namespace. For example, the following code will not
compile if you place it inside Application.Main because Application.Main is
outside the VendorA namespace.

Widget w = new Widget();

You can fix this code by using the fully qualified name for the Widget class, as
follows:

VendorA.Widget w = new VendorA.Widget();

As you can see, using fully qualified names makes code long and difficult to
read. In the next topic, you will learn how to bring class names back into scope
with using-directives.

38 Module 11: Aggregation, Namespaces, and Advanced Scope

Unqualified Names
You can use unqualified names such as Widget only when they are in scope.
For example, the following code will compile successfully because the
Application class has been moved to the VendorA namespace.

namespace VendorA
{
 public class Widget { ... }
}
namespace VendorA
{
 class Application
 {
 static void Main()
 {
 Widget w = new Widget(); // Okay
 }
 }
}

Namespaces allow classes to be logically grouped together inside a
named space. The name of the enclosing space becomes part of the full name of
the class. However, there is no implicit relationship between a namespace and a
project or assembly. An assembly can contain classes from different
namespaces, and classes from the same namespace can be located in different
assemblies.

Important

 Module 11: Aggregation, Namespaces, and Advanced Scope 39

Declaring using-namespace-directives

n Effectively Brings Names Back into Scope

using VendorA.SuiteB;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

using VendorA.SuiteB;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

namespace VendorA.SuiteB;
{

public class Widget { ... }
}

namespace VendorA.SuiteB;
{

public class Widget { ... }
}

With namespace directives, you can use classes outside their namespaces
without using their fully qualified names. In other words, you can make long
names short again.

Using the Members of a Namespace
You use the using-namespace-directives to facilitate the use of namespaces and
types defined in other namespaces. For example, the following code from the
slide would not compile without the using-namespace-directive.

Widget w = new Widget();

The compiler will return an error that would rightly indicate that there is no
global class called Widget. However, with the using VendorA directive, the
compiler is able to resolve Widget because there is a class called Widget inside
the VendorA namespace.

40 Module 11: Aggregation, Namespaces, and Advanced Scope

Nested Namespaces
You can write a using-directive that uses a nested namespace. The following
code provides an example:

namespace VendorA.SuiteB
{
 public class Widget { ... }
}

//...new file...
using VendorA.SuiteB;

class Application
{
 static void Main()
 {
 Widget w = new Widget();
 ...
 }
}

Declaring using-namespace-directives at Global Scope
The using-namespace-directives must appear before any member declarations
when they are used in global scope, as follows:

//...new file...
class Widget
{
 ...
}
using VendorA;
// After class declaration: Compile-time error

//...new file...
namespace Microsoft.Office
{
 ...
}
using VendorA;
// After namespace declaration: Compile-time error

 Module 11: Aggregation, Namespaces, and Advanced Scope 41

Declaring using-directives Inside a Namespace
You can also declare using-directives inside a namespace before any member
declarations, as follows:

//...new file...
namespace Microsoft.Office
{
 using VendorA; // Okay

 public class Widget { ... }
}
namespace Microsoft.PowerPoint
{
 using VendorB; // Okay

 public class Widget { ... }
}
//...end of file...

When used like this, inside a namespace, the effect of a using-namespace-
directive is strictly limited to the namespace body in which it appears.

using-namespace-directives Are Not Recursive
A using-namespace-directive allows unqualified access to the types contained
in the given namespace, but specifically does not allow unqualified access to
nested namespaces. For example, the following code fails to compile:

namespace Microsoft.PowerPoint
{
 public class Widget { ... }
}
namespace VendorB
{
 using Microsoft; // but not Microsoft.PowerPoint

 class SpecialWidget: PowerPoint.Widget { ... }
 // Compile-time error
}

This code will not compile because the using-namespace-directive gives
unqualified access to the types contained in Microsoft, but not to the
namespaces nested in Microsoft. Thus, the reference to PowerPoint.Widget in
SpecialWidget is in error because no members named PowerPoint are
available.

42 Module 11: Aggregation, Namespaces, and Advanced Scope

Ambiguous Names
Consider the following example:

namespace VendorA
{
 public class Widget { ... }
}
namespace VendorB
{
 public class Widget { ... }
}
namespace Test
{
 using VendorA;
 using VendorB;

 class Application
 {
 static void Main()
 {
 Widget w = new Widget(); // Compile-time error
 ...
 }
 }
}

In this cas e, the compiler will return a compile-time error because it cannot
resolve Widget. The problem is that there is a Widget class inside both
namespaces, and both namespaces have using-directives. The compiler will not
select Widget from VendorA rather than VendorB because A comes before B
in the alphabet!

Note however, that the two Widget classes only clash when there is an attempt
to actually use the unqualified name Widget. You can resolve the problem by
using a fully qualified name for Widget, thus associating it with either
VendorA or VendorB. You can also rewrite the code without using the name
Widget at all, as follows, and there would be no error:

namespace Test
{
 using VendorA;
 using VendorB;

 // Okay. No error here.

 class Application
 {
 static void Main(String[] args)
 {
 Widget w = new VendorA.Widget();
 return 0;
 }
 }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 43

Declaring using-alias-directives

n Creates an Alias for a Deeply Nested Namespace or
Type

using Widget = VendorA.SuiteB.Widget;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

using Widget = VendorA.SuiteB.Widget;

class Application
{

static void Main()
{

Widget w = new Widget();
}

}

namespace VendorA.SuiteB
{

public class Widget { ... }
}

namespace VendorA.SuiteB
{

public class Widget { ... }
}

The using-namespace-directive brings all the types inside the namespace into
scope.

Creating Aliases for Types
You can use a using-alias-directive to facilitate the use of a type that is defined
in another namespace. In the code on the slide, without the using-alias-directive,
the line

Widget w = new Widget();

would, once again, fail to compile. The compiler would rightly indicate that
there is no global class called Widget. However, with the using Widget
= ... directive, the compiler is able to resolve Widget because Widget is now
a name that is in scope. A using-alias-directive never creates a new type. It
simply creates an alias for an existing type. In other words, the following three
statements are identical:

Widget w = new Widget(); // 1
VendorA.SuiteB.Widget w = new Widget(); // 2
Widget w = new VendorA.SuiteB.Widget(); // 3

44 Module 11: Aggregation, Namespaces, and Advanced Scope

Creating Aliases for Namespaces
You can also use a using-alias-directive to facilitate the use of a namespace.
For example, the code on the slide could be reworked slightly as follows:

namespace VendorA.SuiteB
{
 public class Widget { ... }
}

//... new file ...
using Suite = VendorA.SuiteB;

class Application
{
 static void Main()
 {
 Suite.Widget w = new Suite.Widget();
 }
}

Declaring using-alias-directives at Global Scope
When declaring using-alias-directives at global scope, you must place them
before any member declarations. The following code provides an example:

//...new file...
public class Outer
{
 public class Inner
 {
 ...
 }
}
// After class declaration: Compile-time error
using Doppelganger = Outer.Inner;
...

//...new file...
namespace VendorA.SuiteB
{
 public class Outer
 {
 ...
 }
}
// After namespace declaration: Compile-time error
using Suite = VendorA.SuiteB;
...

 Module 11: Aggregation, Namespaces, and Advanced Scope 45

Declaring using-alias-directives Inside a Namespace
You can also place using-alias-directives inside a namespace before any
member declarations, as follows:

//...new file...
namespace Microsoft.Office
{
 using Suite = VendorA.SuiteB; // Okay

 public class SpecialWidget: Suite.Widget { ... }
}
...
namespace Microsoft.PowerPoint
{
 using Widget = VendorA.SuiteB.Widget; // Okay

 public class SpecialWidget: Widget { ... }
}
//...end of file...

When you declare a using-alias-directive inside a namespace, the effect is
strictly limited to the namespace body in which it appears. The following code
exemplifies this:

namespace N1.N2
{
 class A { }
}
namespace N3
{
 using R = N1.N2;
}
namespace N3
{
 class B: R.A { } // Compile-time error: R unknown here
}

46 Module 11: Aggregation, Namespaces, and Advanced Scope

Mixing using-directives
You can declare using-namespace-directives and using-alias-directives in any
order. However, using-directives never affect each other; they only affect the
member declarations that follow them, as is shown in the following code:

namespace VendorA.SuiteB
{
 using System;
 using TheConsole = Console; // Compile-time error

 class Test
 {
 static void Main()
 {
 Console.WriteLine("OK");
 }
 }
}

Here the use of Console in Test.Main is allowed because it is part of the Test
member declaration that follows the using-directives. However, the using-alias-
directive will not compile becaus e it is unaffected by the preceding using-
namespace-directive. In other words it is not true that

using System;
using TheConsole = Console;

is the same as

using System;
using TheConsole = System.Console;

Note that this means that the order in which you write using-directives is not
significant.

 Module 11: Aggregation, Namespaces, and Advanced Scope 47

Guidelines for Naming Namespaces

n Use PascalCasing to Separate Logical Components

l Example: VendorA.SuiteB

n Prefix Namespace Names with a Company Name or
Well-Established Brand

l Example: Microsoft.Office

n Use Plural Names When Appropriate

l Example: System.Collections

n Avoid Name Clashes Between Namespaces and Classes

The following are guidelines that you should follow when naming your
namespaces.

Using PascalCasing
Use PascalCasing rather than the camelCasing style when naming namespaces.
Namespaces are implicitly public, so this follows the general guideline that all
public names should use the PascalCas ing notation.

Using Global Prefixes
In addition to providing a logical grouping, namespaces can also decrease the
likelihood of name clashes. You can minimize the risk of name clashes by
choosing a unique top-level namespace that effectively acts as a global prefix.
The name of your company or organization is a good top-level namespace.
Within this namespace, you can include sublevel namespaces if you want. For
example, you could use the name of the project as a nested namespace within
the company-name namespace.

48 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Plural Names When Appropriate
Although it almost never makes sense to name a class with a plural name, it
does sometimes make sense for a namespace. There is a namespace in the .NET
software development kit (SDK) framework called Collections (which is
located in the System namespace), for example. The name of a namespace
should reflect its purpose, which is to collect together a group of related classes.
Try to choose a name that corresponds to the collective task of these related
classes. It is easy to name a namespace when its classes collaborate to achieve a
clearly defined objective.

Avoiding Name Clashes
Avoid using namespaces and classes that have the same name. The following is
allowed but not a good idea:

namespace Wibble
{
 class Wibble
 {
 ...
 }
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 49

u Using Modules and Assemblies

n Using Modules

n Using Assemblies

n Creating Assemblies

n Comparing Namespaces to Assemblies

n Using Versioning

In this section, you will learn how to deploy C# assemblies. Source files can be
compiled directly into portable executable (PE) files. However, source files can
also be compiled into .NET dynamic -link library (DLL) modules. These DLL
modules can be combined into .NET assemblies. The assemblies are the top-
level units of deployment, and their constituent modules are the units of
download within an assembly.

You will learn about the differences between namespaces and assemblies.
Finally, you will learn how versioning works in .NET assemblies and how to
use versioning to resolve DLL conflicts.

50 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Modules

n .cs Files Can Be Compiled into a .NET DLL Module

n .NET DLL Modules Are the Units of Dynamic Download

// Create an executable directly
csc /out:app.exe /t:exe bank.cs app.cs
// Create an executable directly
csc /out:app.exe /t:exe bank.cs app.cs

// Create a DLL module
csc /out:bank.mod /t:module bank.cs
// Create a DLL module
csc /out:bank.mod /t:module bank.cs

A .NET DLL is called a module and is the next evolution of a traditional DLL.

Creating an Executable
You can compile .cs source files directly into a PE file. You do this by using the
/target:exe switch (which can be abbreviated to /t:exe) on the CSC command-
line compiler. PE files contain the Microsoft intermediate language (MSIL)
code for the .cs source files.

When you create a PE file, the CSC compiler will add a command-line option
to reference the mscorlib.dll. In other words, the command line

c:\> csc /out:app.exe /t:exe bank.cs app.cs

is equivalent to

c:\> csc /out:app.exe /t:exe /r:mscorlib.dll bank.cs app.cs

The /r:mscorlib.dll is a shorthand form of /reference:mscorlib.dll. The
mscorlib.dll is the assembly that contains some of the essential .NET SDK
classes, such as System.Console.

The /out:app.exe switch is a command-line switch that controls the name of the
PE file that is being created. If you do not specify the /out option, the name of
the PE file will be based on the name of this first .cs file. For example, you can
use the following code to create an executable named bank.exe:

c:/> csc /t:exe bank.cs app.cs

The executable will be called bank.exe because bank.cs is named before app.cs
on the command line.

 Module 11: Aggregation, Namespaces, and Advanced Scope 51

Creating a DLL Module
You can also compile one or more .cs files into a DLL module. The following
command creates a DLL module file called bank.dll from a single source file
bank.cs:

c:\> csc /out:bank.dll /target:module bank.cs

Notice that in this case the option used on the /target switch is module rather
than exe . Modules and assemblies are both essentially DLL files. However,
there are important differences (which will be explained later in this module),
so it is a good idea to give your modules a different extension such as .mod.
(This will also prevent people from accidentally trying to execute them!)

c:\> csc /out:bank.mod /target:module bank.cs

If you do not use the /out switch, the name of the DLL module will be based on
the name of the first .cs file on the command line. For example, you can use the
following code to create a DLL module called bank.dll:

c:\> csc /target:module bank.cs bankaccount.cs

DLL modules must be self-contained. For example, if class A is defined in a.cs
and the definition of A uses class B, which is defined in b.cs, the following
code will fail:

c:\> csc /out:a.mod /target:module a.cs

Instead, you must use the following code:

c:\> csc /out:ab.mod /target:module a.cs b.cs

52 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Assemblies

n Group of Collaborating Classes

l Reusable, versionable, and secure deployment unit

n Physical Access Control at Assembly Level

l Internal

an assembly
of four classes

public
internal
private

Executables can only use modules that have been added to an assembly.

What Is an Assembly?
You can physically deploy a group of collaborating classes in an assembly. You
can think of an assembly as a logical DLL. Classes that are located inside the
same assembly have access to each other’s internal members (and classes
located outside the assembly do not have access to these members).

An assembly is a reusable, versionable, secure, and self -describing deployment
unit for types and resources; it is the primary building block of a .NET
application. An assembly consists of two logical pieces: the set of types and
resources that form some logical unit of functionality, and metadata that
describes how these elements relate and what they depend on to work properly.
The metadata that describes an assembly is called a manifest. The following
information is captured in an assembly manifest:

n Identity. An assembly’s identity includes its simple textual name, a version
number, an optional culture if the assembly contains localized resources,
and an optional public key used to guarantee name uniqueness and to
protect the name from unwanted reuse.

n Contents. Assemblies contain types and resources. The manifest lists the
names of all of the types and resources that are visible outside the assembly,
and information about where they can be found in the assembly.

n Dependencies. Each assembly explicitly describes other assemblies that it is
dependent upon. Included in this dependency information is the version of
each dependency that was present when the manifest was built and tested. In
this way, you record a configuration that you know to be good, which you
can revert to in the event of failures because of version mismatches.

 Module 11: Aggregation, Namespaces, and Advanced Scope 53

In the simplest case, an assembly is a single DLL. This DLL contains the code,
resources, type metadata, and assembly metadata (manifest). In the more
general case, however, assemblies consist of a number of files. In this case, the
assembly manifest either exists as a standalone file or is contained in one of the
PE files that contain types, resources, or a combination of the two.

The types declared and implemented in individual components are exported for
use by other implementations by the assembly in which the component
participates. Effectively, assemblies establish a name scope for types.

54 Module 11: Aggregation, Namespaces, and Advanced Scope

Creating Assemblies

n .NET DLL Modules Must Be Added to a .NET Assembly

n Assembly = MSIL + (module*n1) + (resource*n2) +
manifest

n Assemblies Are the Unit of Deployment and Versioning

// Create an executable that references an assembly
csc /out:app.exe /t:exe /reference:bank.dll app.cs
// Create an executable that references an assembly
csc /out:app.exe /t:exe /reference:bank.dll app.cs

// Create an assembly from source files
csc /out:bank.dll /t:library bank.cs
// Create an assembly from source files
csc /out:bank.dll /t:library bank.cs

// Create an assembly from DLL modules using assembly linker
al /out:bank.dll /t:library bank.mod other.mod x
// Create an assembly from DLL modules using assembly linker
al /out:bank.dll /t:library bank.mod other.mod x

A .NET module cannot be directly used in an executable. Executables can only
use modules that have been added to an assembly.

Creating an Assembly from Source Files
You can create an assembly directly from one or more .cs source files, as
follows:

c:/> csc /out:bank.dll /target:library bank.cs

Note that the /target switch is library rather than exe or module. You can
inspect assembly files by using the Intermediate Language Disassembler
(ILDASM) tool, as shown in the following code:

c:/> ildasm bank.dll

In this case, the types declared in the .cs files are contained directly inside the
assembly.

 Module 11: Aggregation, Namespaces, and Advanced Scope 55

Creating an Assembly from DLL Modules
Suppose the AccountType, BankAccount, and BankTransaction types are
located in three separate source files and have each been compiled into
individual modules called at.mod, ba.mod, and bt.mod, respectively. You can
then create an assembly based on bank.cs, and at the same time add in the three
module files:

c:/> csc /out:bank.dll /target:library
 Ê/addmodule:at.mod;ba.mod;bt.mod bank.cs

If you run ILDASM on the resulting bank.dll assembly, you will see the
following:

56 Module 11: Aggregation, Namespaces, and Advanced Scope

Note that only the bank class (in the Banking namespace) from bank.cs is
directly contained in the assembly. The assembly contains the MSIL code for
the bank class directly. The three module files are only logically contained
inside the assembly. By opening the Manifest window, you can see what is
happening, as shown in the following example:

Notice that the .mod module files are held inside the assembly as named links
to the external .mod files.

.module extern 'at.mod'

Notice too that bank.dll itself is an assembly:

.assembly 'bank' as "bank"

You can also use the Assembly Linker utility (AL.exe) to create assemblies. For
example, suppose b.mod module was created from bank.cs. All four module
files could then be combined to create the bank.dll assembly:

c:\> al /out:bank.dll /t:library b.mod ba.mod bt.mod at.mod

 Module 11: Aggregation, Namespaces, and Advanced Scope 57

If you run ILDASM on the resulting bank.dll assembly, you will see the
contents of the assembly, as shown:

This time the assembly does not physically contain any types at all. The types
are all logically inside the assembly by being named as external modules in the
assembly:

Creating an Executable That References an Assembly
To create an executable file that uses an assembly, you must reference the
assembly by using the /reference switch (or its short form, /r), as shown in the
following code:

c:\> csc /out:app.exe /t:exe /r:bank.dll app.cs

You can then execute app.exe, and it will dynamically link in bank.dll and all of
the modules contained inside bank.dll on a load-on-demand basis. If you delete
the bank.dll assembly and try to run app.exe, the following exception will be
generated:

Exception occured: System.TypeLoadException: Could not load
Êclass ...

You can only reference assemblies, not modules.

58 Module 11: Aggregation, Namespaces, and Advanced Scope

Private Assemblies
The assemblies created so far have all been saved in the same folder as the
executing program that references them. Such assemblies are called private
assemblies and cannot be shared with other executing programs (unless those
programs are also saved in the same folder).

You can share an assembly by installing it in the Global Assembly Cache (GAC)
by using the /install option of the AL.exe utility. Details about shared
assemblies are beyond the scope of this course.

You can also install private assemblies in subfolders below the executables
folder. You can then create an XML-based configuration file that specifies the
name of this subfolder. Details about the configuration file are also beyond the
scope of this course.

 Module 11: Aggregation, Namespaces, and Advanced Scope 59

Comparing Namespaces to Assemblies

n Namespace: Logical Naming Mechanism

l Classes from one namespace can reside in
many assemblies

l Classes from many namespaces can reside in
one assembly

n Assembly: Physical Grouping Mechanism

l Assembly MSIL and manifest are contained directly

l Assembly modules and resources are external links

A namespace is a logical compile-time mechanism. Its purpose is to provide
logical structure to the names of source code entities. Namespaces are not run-
time entities.

An assembly is a physical run-time mechanism. Its purpose is to provide a
physical structure to the run-time components that make up an executable.

Comparing Namespaces to Assemblies
You can deploy classes that are located in the same namespace into different
assemblies. You can deploy classes that are located in different namespaces into
one assembly. However, it is a good idea to maintain as close a logical-physical
correspondence as possible.

Namespaces and assemblies are alike insofar as the physical locations of their
elements:

n The elements of a namespace do not need to physically reside in a single
source file. The elements of a namespace can (and, as a broad principle,
should) be maintained in separate source files.

n The element references by an assembly do not need to reside directly inside
the assembly. As you have seen, the modules inside a namespace are not
physically contained inside the assembly. Instead, the assembly records a
named link to the external module.

60 Module 11: Aggregation, Namespaces, and Advanced Scope

Using Versioning

n When Versioning Assemblies:

l Make sure all assemblies have a version number

l Remember that assemblies differing only by version can co-exist

l Never modify an existing assembly; instead create a new assembly
with a new version

Each assembly has a specific compatibility version number as part of its
identity. Because of this, two assemblies that differ by compatibility version are
completely different assemblies to the .Common Language Runtime class
loader.

Version Number Format
The compatibility version number is physically represented as a four-part
number with the following format:

<major version>.<minor version>.<revision>.<build number>

Each portion of this number has a specific meaning to the .NET runtime. As
shown on the slide, the .NET runtime can determine the following information
about an assembly from its version number:

n It is incompatible. A change has been made to the assembly that is known to
be incompatible with previous versions. A major new release of the product
would be an example of this.

n It might be compatible. A change has been made to the assembly that is
thought to be compatible and carries less risk than an incompatible change.
However, backwards compatibility is not guaranteed. A service pack or a
release of a new daily build would be an example of this.

n Quick Fix Engineering (QFE). This is an engineering fix to which
customers should upgrade. An emergency security fix would be an example
of this.

 Module 11: Aggregation, Namespaces, and Advanced Scope 61

Specifying a Version Number
When you create an assembly, you can specify the version number by using the
/a switch, as shown in the following code:

c:\> csc /out:bank.dll /t:library *.cs /a.version:2.0.6.19

This will cause the manifest to look as follows:

Notice that the bank assembly now has a version number specified as

.ver 2:0:6:19

Notice also that the external mscorlib.dll has a version number specified as

.ver 2000:14:1812:10

62 Module 11: Aggregation, Namespaces, and Advanced Scope

You can also inspect an assembly version number by viewing the assembly’s
properties, as shown in the following property sheet:

Resolving DLL Conflicts
In earlier versions of Microsoft Windows®, it was not possible to load two DLL
files that had the same name into a single process. This created a serious
problem for developers and users. A DLL upgrade was installed by overwriting
the existing DLL file and modifying the registry for each user. This could easily
introduce bugs into other applications that shared the original DLL. It is this
DLL upgrade problem rather than Windows itself that caused most user
problems. As a result, many developers avoid using shared DLLs in
applications.

Windows 2000 and Windows Millennium Edition can overcome DLL conflicts
because they are able to load two assemblies that have the same name but
different version numbers. This ability to load different versions of the same
assembly is called side-by-side execution. (Only shared assemblies can be
loaded side by side.)

This initiates a new model of development. An existing assembly should never
be modified. To fix bugs or add new features, create a new assembly that has
the same name but a later version number. Different versions of the assembly
can then exist side by side, and individual applications can be configured (using
text-based XML-base configuration files) to use assemblies with specific
version numbers. This is a revolutionary innovation. It means that new versions
of an assembly do not have to maintain backward compatibility. Assemblies are
write-once files.

 Module 11: Aggregation, Namespaces, and Advanced Scope 63

Lab 11.2: Using Namespaces and Assemblies

Objectives
After completing this lab, you will be able to:

n Use aggregation to group objects in a hierarchy.

n Organize classes into namespaces.

Prerequisites
Before working on this lab, you must be able to:

n Create classes.

n Use constructors and destructors.

n Use private and public access modifiers.

Estimated time to complete this lab: 30 minutes

64 Module 11: Aggregation, Namespaces, and Advanced Scope

Exercise 1
Organizing Classes

In this exercise, you will organize classes into a Banking namespace and create
and reference an assembly. To do this, you will:

1. Place the AccountType enum and the Bank , BankAccount, and
BankTransaction classes into the Banking namespace, and compile it as a
library.

2. Modify the test harness. Initially, it will refer to the classes by using fully
qualified names. You will then modify it with an appropriate using-directive.

3. Compile the test harness into an assembly that references the Banking
library.

4. Use the ILDASM tool to verify that the test harness .exe refers to the
Banking DLL and does not actually contain the Bank and BankAccount
classes itself.

å To place all of the classes into the Banking namespace

1. Open the Bank.sln project in the install folder\Labs\Lab11\
Exercise 2\Starter \Bank folder.

2. Edit the AccountType enum in AccountType.cs so that it is nested inside
the Banking namespace, as follows:

namespace Banking
{
 public enum AccountType { ... }
}

3. Edit the Bank class in Bank.cs so that it is nested inside the Banking
namespace, as follows:

namespace Banking
{
 public class Bank
{
 ...
}
}

4. Edit the BankAccount class in BankAccount.cs so that it is nested inside
the Banking namespace, as follows:

namespace Banking
{
 public class BankAccount
{
 ...
}
}

 Module 11: Aggregation, Namespaces, and Advanced Scope 65

5. Edit the BankTransaction class in BankTransaction.cs so that it is nested
inside the Banking namespace, as follows:

namespace Banking
{
 public class BankTransaction
{
 ...
}
}

6. Save your work.

7. Compile the program. It will fail to compile. The references to Bank,
BankAccount, and BankTransaction in the CreateAccount.cs file cannot
be resolved because these classes are now located inside the Banking
namespace. Modify CreateAccount.Main to explicitly resolve all of these
references. For example,

static void write(BankAccount acc) { ... }

will become

static void write(Banking.BankAccount acc) { ... }

8. Save your work.

9. Compile the program and correct any errors. Verify that Sid’s bank account
is created and that the deposit and withdrawal appear in the transaction list if
they are successful.

10. Open a Command window, and navigate to the install folder\
Labs\Lab11\Exercise2\Starter \Bank folder. From the command prompt,
create the executable, as shown in the following code:

c:\> csc /out:createaccount.exe *.cs
c:\> dir
...
createaccount.exe
...

11. From the command prompt, run ILDASM, passing the name of the
executable as a command-line parameter, as follows:

c:\> ildasm createaccount.exe

12. Notice that the three classes and the enum are now listed inside the
Banking namespace and that the CreateAccount class is present.

13. Close ILDASM.

66 Module 11: Aggregation, Namespaces, and Advanced Scope

å To create and use a Banking library

1. Open a Command window, and navigate to the install folder\
Labs\Lab11\Exercise2\Starter \Bank folder. From the command prompt,
create the banking library as follows:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> dir
...
bank.dll
...

2. From the command prompt, run ILDASM, passing the name of the DLL as
a command-line parameter, as follows:

c:\> ildasm bank.dll

3. Notice that the three “Bank*” classes and the enum are still listed inside the
Banking namespace, but the CreateAccount class is no longer present.
Close ILDASM.

4. From the command prompt, compile the test harness inside
CreateAccount.cs into an assembly that references the Banking library
bank.dll, as follows:

c:\> csc /reference:bank.dll createaccount.cs
c:\> dir
...
createaccount.exe
...

5. From the command prompt, run ILDASM, passing the name of the
executable as a command-line parameter, as follows:

c:\> ildasm createaccount.exe

6. Notice that the four classes and the enum are no longer part of
createaccount.exe. Double-click the MANIFEST item in ILDASM to open
the Manifest window. Look at the manifest. Notice that the executable
references, but does not contain, the banking library:

.assembly extern bank

7. Close ILDASM.

 Module 11: Aggregation, Namespaces, and Advanced Scope 67

å To simplify the test harness with a using-directive

1. Edit CreateAccount.cs, and remove all occurrences of the Banking
namespace. For example,

 static void write(Banking.BankAccount acc) { ... }

will become

 static void write(BankAccount acc) { ... }

2. Save your work.

3. Attempt to compile the program. It will fail to compile. Bank,
BankAccount, and BankTransaction still cannot be found.

4. Add to the beginning of CreateAccount.cs a using-directive that uses
Banking, as follows:

using System;
using System.Collections;
using Banking;

5. Compile the program, correct any errors, and run the program. Verify that
Sid’s bank account is created and that the deposit and withdrawal appear in
the transaction list if they are successful.

68 Module 11: Aggregation, Namespaces, and Advanced Scope

å To investigate internal methods

1. Edit the Main method in the CreateAccount.cs test harness. Add a single
statement that creates a new BankTransaction object, as follows:

static void Main()
{
 new BankTransaction(0.0M);
 ...
}

2. Open a Command window, and navigate to the install folder\
Labs\Lab11\Exercise2\Starter \Bank folder. From the command prompt, use
the following line of code to verify that you can create an executable that
does not use the banking library:

c:\> csc /out:createaccount.exe *.cs

3. From the command prompt, verify that you can create an executable that
does use the banking library:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> csc /reference:bank.dll createaccount.cs

4. The extra statement in Main will not create problems in either case. This is
because the BankTransaction constructor in BankTransaction.cs is
currently public.

5. Edit the BankTransaction class in BankTransaction.cs so that its
constructor and Dispose method have internal access.

6. Save your work.

7. From the command prompt, verify that you can still create an executable
that does not use the banking library:

c:\> csc /out:createaccount.exe *.cs

8. From the command prompt, verify that you cannot create an executable that
does use the banking library:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> csc /reference:bank.dll createaccount.cs
....error: Banking.BankTransaction.BankTransaction(decimal)
is inaccessible because of its protection level

9. Remove from CreateAccount.Main the extra statement that creates a new
BankTransaction object.

10. Verify that you can once again compile the test harness into an assembly
that references the Banking library:

c:\> csc /target:library /out:bank.dll a*.cs b*.cs
c:\> csc /reference:bank.dll createaccount.cs

 Module 11: Aggregation, Namespaces, and Advanced Scope 69

Review

n Using Internal Classes, Methods, and Data

n Using Aggregation

n Using Namespaces

n Using Modules and Assemblies

1. Imagine that you have two .cs files. The alpha.cs file contains a class called
Alpha that contains an internal method called Method. The beta.cs file
contains a class called Beta that also contains an internal method called
Method. Can Alpha.Method be called from Beta.Method, and vice versa?

2. Is aggregation an object relationship or a class relationship?

70 Module 11: Aggregation, Namespaces, and Advanced Scope

3. Will the following code compile without error?

namespace Outer.Inner
{
 class Wibble { }
}
namespace Test
{
 using Outer.Inner;
 class SpecialWibble: Inner.Wibble { }
}

4. Can a .NET executable program directly reference a .NET DLL module?

THIS PAGE INTENTIONALLY LEFT BLANK

