

Contents

Overview 1

Using Properties 2
Using Indexers 17

Lab 13: Using Properties and Indexers 33

Review 42

Module 13: Properties
and Indexers

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 13: Properties and Indexers 1

Overview

n Using Properties

n Using Indexers

You can expose the named attributes for a class by using either fields or
properties. Fields are implemented as member variables with public access. In
C#, properties appear to be fields to the user of a class, but they use methods to
get and set values.

C# provides an indexer feature that allows you to index the members of an
object (with an instance indexer) or a class (with a static indexer) as if they
were an array. As with properties, you use get or set methods to perform
indexing operations.

In this module, you will learn how to use properties and indexers. You will
learn how to use properties to enable field- like access and indexers to enable
array-like access.

After completing this module, you will be able to:

n Create properties to encapsulate data within a class.

n Define indexers to gain access to classes by using array-like notation.

2 Module 13: Properties and Indexers

u Using Properties

n Why Use Properties?

n Using Accessors

n Comparing Properties to Fields

n Comparing Properties to Methods

n Property Types

n Property Example

In this section, you will learn how to use properties to encapsulate and access
data in a class.

 Module 13: Properties and Indexers 3

Why Use Properties?

n Properties Provide:

l A useful way to encapsulate information inside a class

l Concise syntax

l Flexibility

Properties provide a useful way to encapsulate data within a class. Examples of
properties include the length of a string, the size of a font, the caption of a
window, the name of a customer, and so on.

Concise Syntax
C# adds properties as first-class elements of the language. Many existing
languages, such as Microsoft® Visual Basic®, already have properties as first-
class elements of the language. If you think of a property as a field, it can help
you to focus on the applic ation logic. Compare, for example, the following two
statements. The first statement does not use properties, whereas and the second
does use properties.

o.SetValue(o.GetValue() + 1);

o.Value++;

The statement that uses a property is certainly easier to understand and much
less error prone.

4 Module 13: Properties and Indexers

Flexibility
To read or write the value of a property, you use field-like syntax. (In particular,
you do not use parentheses.) However, the compiler translates this field-like
syntax into encapsulated method-like get and set accessors. For example, Value
could be a property of the object o in the expression o.Value, which will cause
the statements inside the get accessor “method” for the Value property to be
executed. This separation allows the statements inside the get and set accessors
of a property to be modified without affecting the use of the property, which
retains its field- like syntax. Because of this flexibility, you should use
properties instead of fields whenever possible.

When you expose state through a property, your code is potentially less
efficient than when you expose state directly through a field. However, when a
property contains only a small amount of code and is non-virtual (which is
frequently the case), the execution environment can replace calls to an accessor
with the actual code of the accessor. This process is known as inlining, and it
makes property access as efficient as field access, yet it preserves the increased
flexibility of properties.

 Module 13: Properties and Indexers 5

Using Accessors

n Properties Provide Field-like Access

l Use get accessor statements to provide read access

l Use set accessor statements to provide write access

class Button
{

public string Caption // Property
{

get { return caption; }
set { caption = value; }

}
private string caption; // Field

}

class Button
{

public string Caption // Property
{

get { return caption; }
set { caption = value; }

}
private string caption; // Field

}

A property is a class member that provides access to a field of an object. You
use a property to associate actions with the reading and writing of an object’s
attribute. A property declaration consists of a type and a name and has either
one or two pieces of code referred to as accessors. These accessors are as
follows:

n get accessor

n set accessor

Accessors have no parameters. A property does not need to have both a get
accessor and a set accessor. For example, a read-only property will provide
only a get accessor. You will learn more about read-only properties later in this
section.

Using the get Accessor
The get accessor of a property returns the value of the property. The following
code provides an example:

public string Caption
{
 get { return caption; }
 ...
}

6 Module 13: Properties and Indexers

You implicitly call a property’s get accessor when you use that property in a
read context. The following code provides an example:

Button myButton;
...
string cap = myButton.Caption; // Calls "Caption.get"

Notice that you do not use parentheses after the property name. In this example,
the statement return caption; returns a string. This string is returned
whenever the value of the Caption property is read.

Reading a property should not change the object’s data. When you invoke a get
accessor, it is conceptually equivalent to reading the value of a field. A get
accessor should not have observable side effects.

Using the set Accessor
The set accessor of a property modifies the value of a property.

public string Caption
{
 ...
 set { caption = value; }
}

You implicitly call a property’s set accessor when you use that property in a
write context— that is, when you use it in an assignment. The following code
provides an example:

Button myButton;
...
myButton.Caption = "OK"; // Calls "Caption.set"

Notice again that you do not use parentheses. The variable value contains the
value that you are assigning and is created automatically by the compiler. Inside
the set accessor for the Caption property, value can be thought of as a string
variable that contains the string “OK.” A set accessor cannot return a value.

Invoking a set accessor is syntactically identical to a simple assignment, so you
should limit its observable side effects. For example, it would be somewhat
unexpected for the following statement to change both the speed and the color
of the thing object.

thing.speed = 5;

However, sometimes set accessor side effects can be useful. For example, a
shopping basket object could update its total whenever the item count in the
basket is changed.

 Module 13: Properties and Indexers 7

Comparing Properties to Fields

n Properties Are “Logical Fields”

l The get accessor can return a computed value

n Similarities

l Syntax for creation and use is the same

n Differences

l Properties are not values; they have no address

l Properties cannot be used as ref or out parameters to
methods

As an experienced developer, you already know how to use fields. Because of
the similarities between fields and properties, it is useful to compare these two
programming elements.

Properties Are Logical Fields
You can use the get accessor of a property to calculate a value rather than return
the value of a field directly. Think of properties as logical fields— that is, fields
that do not necessarily have a direct physical implementation. For example, a
Person class might contain a field for the person’s date of birth and a property
for the person’s age that calculates the person’s age:

class Person
{
 public Person(DateTime born)
 {
 this.born = born;
 }

 public int Age
 {
 // Simplified...
 get { return DateTime.Now.Year – born.Year; }
 }
 ...
 private readonly DateTime born;
}

8 Module 13: Properties and Indexers

Similarities with Fields
Properties are a natural extension of fields. Like fields, they:

n Specify a name with an associated non-void type, as shown:

class Example
{
 int field;
 int Property { ... }
}

n Can be declared with any access modifier, as shown:

class Example
{
 private int field;
 public int Property { ... }
}

n Can be static, as shown:

class Example
{
 static private int field;
 static public int Property { ... }
}

n Can hide base class members of the same name, as shown:

class Base
{
 public int field;
 public int Property { ... }
}
class Example: Base
{
 new public int field;
 new public int Property { ... }
}

n Are assigned to or read from by means of field syntax, as shown:

Example o = new Example();
o.field = 42;
o.Property = 42;

 Module 13: Properties and Indexers 9

Differences from Fields
Unlike fields, properties do not correspond directly to storage locations. Even
though you use the same syntax to access a property that you would use to
access a field, a property is not classified as a variable. So you cannot pass a
property as a ref or out parameter without getting compile-time errors. The
following code provides an example:

class Example
{
 public string Property
 {
 get { ... }
 set { ... }
 }
 public string Field;
}
class Test
{
 static void Main()
 {
 Example eg = new Example();

 ByRef(ref eg.Property); // Compile-time error
 ByOut(out eg.Property); // Compile-time error

 ByRef(ref eg.Field); // Okay
 ByOut(out eg.Field); // Okay
 }
 static void ByRef(ref string name) { ... }
 static void ByOut(out string name) { ... }
}

10 Module 13: Properties and Indexers

Comparing Properties to Methods

n Similarities

l Both contain code to be executed

l Both can be used to hide implementation details

l Both can be virtual, abstract, or override

n Differences

l Syntactic – properties do not use parentheses

l Semantic – properties cannot be void or take arbitrary
parameters

Similarities with Methods
With both properties and methods, you can:

n Specify statements to be executed.

n Specify a return type that must be at least as accessible as the property itself.

n Mark them as virtual, abstract, or override.

n Introduce them in an interface.

n Provide a separation between an object’s internal state and its public
interface (which you cannot do with a field).

 Module 13: Properties and Indexers 11

This last point is perhaps the most important. You can change the
implementation of a property without affecting the syntax of how you use the
property. For example, in the following code, notice that the TopLeft property
of the Label class is implemented directly with a Point field.

struct Point
{
 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 public int x, y;
}
class Label
{
 ...
 public Point TopLeft
 {
 get { return topLeft; }
 set { topLeft = value; }
 }
 private Point topLeft;
}
class Use
{
 static void Main()
 {
 Label text = new Label(...);
 Point oldPosition = text.TopLeft;
 Point newPosition = new Point(10,10);
 text.TopLeft = newPosition;
 }
 ...
}

12 Module 13: Properties and Indexers

Because TopLeft is implemented as a property, you can also implement it
without changing the syntax of how you use the property, as shown in this
example, which uses two int fields named x and y instead of the Point field
named topLeft:

class Label
{
 public Point TopLeft
 {
 get { return new Point(x,y); }
 set { x = value.x; y = value.y; }
 }
 private int x, y;
}
class Use
{
 static void Main()
 {
 Label text = new Label(...);
 // Exactly the same
 Point oldPosition = text.TopLeft;
 Point newPosition = new Point(10,10);
 text.TopLeft = newPosition;
 ...
 }
}

Differences from Methods
Properties and methods dif fer in a few important ways, as summarized in the
following table.

Feature Properties Methods

Use parentheses No Yes

Specify arbitrary parameters No Yes

Use void type No Yes

Consider the following examples:

n Properties do not use parentheses, although methods do.

class Example
{
 public int Property { ... }
 public int Method() { ... }
}

 Module 13: Properties and Indexers 13

n Properties cannot specify arbitrary parameters, although methods can.

class Example
{
 public int Property { ... }
 public int Method(double d1, decimal d2) { ... }
}

n Properties cannot be of type void, although methods can.

class Example
{
 public void Property { ... } // Compile-time error
 public void Method() { ... } // Okay
}

14 Module 13: Properties and Indexers

Property Types

n Read/Write Properties

l Have both get and set accessors

n Read-Only Properties

l Have get accessor only

l Are not constants

n Write-Only Properties – Very Limited Use

l Have set accessor only

n Static Properties

l Apply to the class and can access only static data

When using properties, you can define which operations are allowed for each
property. The operations are defined as follows:

n Read/write properties

When you implement both get and set, you have both read and write access
to the property.

n Read-only properties

When you implement only get, you have read-only access to the property.

n Write-only properties

When you implement only set, you have write-only access to the property.

Using Read-Only Properties
Properties that only have a get accessor are called read-only properties. In the
example below, the BankAccount class has a Balance property with a get
accessor but no set accessor. Therefore, Balance is a read-only property.

class BankAccount
{
 private decimal balance;
 public decimal Balance
 {
 get { return balance; } // But no set
 }
}

 Module 13: Properties and Indexers 15

You cannot assign a value to a read-only property. For example, if you add the
statements below to the previous example, you will get a compile-time error.

BankAccount acc = new BankAccount();
acc.Balance = 1000000M;

A common mistake is to think that a read-only property specifies a constant
value. This is not the case. In the following example, the Balance property is
read-only, meaning you can only read the value of the balance. However, the
value of the balance can change over time. For example, the balance will
increase when a deposit is made.

class BankAccount
{
 private decimal balance;
 public decimal Balance
 {
 get { return balance; }
 }
 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 ...
}

Using Write-Only Properties
Properties that only have a set accessor are called write-only properties. In
general, you should avoid using write-only properties.

If a property does not have a get accessor, you cannot read its value; you can
only assign a value to it. If you attempt to read from a property that does not
have a get accessor, you will get a compile-time error.

Static Properties
A static property, like a static field and a static method, is associated with the
class and not with an object. Because a static property is not associated with a
specific instance, it can access only static data and cannot refer to this or
instance data. Following is an example:

class MyClass
{
 private int MyData = 0;

 public static int ClassData
 {
 get {
 return this.MyData; // Error
 }
 }
}

You cannot include a virtual, abstract , or override modifier on a static
property.

16 Module 13: Properties and Indexers

Property Example

public class Console
{

public static TextReader In
{

get {
if (reader == null) {

reader = new StreamReader(...);
}
return reader;

}
}
...
private static TextReader reader = null;

}

public class Console
{

public static TextReader In
{

get {
if (reader == null) {

reader = new StreamReader(...);
}
return reader;

}
}
...
private static TextReader reader = null;

}

Just-in-Time Creation
You can use properties to delay the initialization of a resource until the moment
it is first referenced. This technique is referred to as lazy creation, lazy
instantiation, or just-in-time creation. The following code shows an example
from the Microsoft .NET SDK Framework of just-in-time creation (simplified
and not thread-safe):

public class Console
{
 public static TextReader In
 {
 get {
 if (reader == null) {
 reader = new StreamReader(...);
 }
 return reader;
 }
 }
 ...
 private static TextReader reader = null;
}

In the code, notice that:

n The underlying field called reader is initialized to null.

n Only the first read access will execute the body of the if statement inside the
get accessor, thus creating the new StreamReader object. (StreamReader
is derived from TextReader.)

 Module 13: Properties and Indexers 17

u Using Indexers

n What Is an Indexer?

n Comparing Indexers to Arrays

n Comparing Indexers to Properties

n Using Parameters to Define Indexers

n String Example

n BitArray Example

An indexer is a member that enables an object to be indexed in the same way as
an array. Whereas you can use properties to enable field - like access to the data
in your class, you can use indexers to enable array-like access to the members
of your class.

In this section, you will learn how to define and use indexers.

18 Module 13: Properties and Indexers

What Is an Indexer?

n An Indexer Provides Array-like Access to an Object

l Useful if a property can have multiple values

n To Define an Indexer

l Create a property called this

l Specify the index type

n To Use an Indexer

l Use array notation to read or write the indexed property

An object is composed of a number of subitems. (For example, a list box is
composed of a number of strings.) Indexers allow you to access the subitems by
using array-like notation.

Defining Indexers
The following code shows how to implement an indexer that provides access to
an internal array of strings called list:

class StringList
{
 public string[] list;
 public string this[int index]
 {
 get { return list[index]; }
 set { list[index] = value; }
 }
 ...
 // Other code and constructors to initialize list
}

The indexer is a property called this and is denoted by square brackets
containing the type of index it uses. (Indexers must always be called this; they
never have names of their own. They are accessed by means of the object they
belong to.) In this case, the indexer requires that an int be supplied to identify
the value to be returned or modified by the accessors.

 Module 13: Properties and Indexers 19

Using Indexers
You can use the indexer of the StringList class to gain both read and write
access to the members of myList , as shown in the following code:

...
StringList myList = new StringList();
...
myList[3] = "Hello"; // Indexer write
...
string myString = myList[8]; // Indexer read
...

Notice that the syntax for reading or writing the indexer is very similar to the
syntax for using an array. Referencing myList with an int in square brackets
causes the indexer to be used. Either the get accessor or the set accessor will be
invoked, depending upon whether you are reading or writing the indexer.

20 Module 13: Properties and Indexers

Comparing Indexers to Arrays

n Similarities

l Both use array notation

n Differences

l Indexers can use non-integer subscripts

l Indexers can be overloaded— you can define several
indexers, each using a different index type

l Indexers are not variables, so they do not denote
storage locations— you cannot pass an indexer as a ref
or an out parameter

Although indexers use array notation, there are some important differences
between indexers and arrays.

Defining Index Types
The type of the index used to access an array must be integer. You can define
indexers to accept other types of indexes. For example, the following code
shows how to use a string indexer:

class NickNames
{
 public Hashtable names = new Hashtable();
 public string this[string realName]
 {
 get { return names[realName]; }
 set { names[realName] = value; }
 }
 ...
}

 Module 13: Properties and Indexers 21

In the following example, the NickNames class stores real name and nickname
pairs. You can store a nickname and associate it with a real name, and then later
request the nickname for a given real name.

...
NickNames myNames = new NickNames();
...
myNames["John"] = "Cuddles";
...
string myNickName = myNames["John"];
...

Overloading
A class can have multiple indexers, if they use different index types. You could
extend the NickNames class to create an indexer that takes an integer index.
The indexer could iterate through the Hashtable the specified number of times
and return the value found there. Following is an example:

class NickNames
{
 public Hashtable names = new Hashtable();
 public string this[string realName]
 {
 get { return names[realName]; }
 set { names[realName] = value; }
 }

 public string this[int nameNumber]
 {
 get
 {
 string nameFound;
 // Code that iterates through the Hashtable
 // and populates nameFound
 return nameFound;
 }
 }
 ...

}

22 Module 13: Properties and Indexers

Indexers Are Not Variables
Unlike arrays, indexers do not correspond directly to storage locations. Instead,
indexers have get and set accessors that specify the statements to execute in
order to read or write their values. This means that even though you use the
same syntax for accessing an indexer that you use to access an array (you use
square brackets in both cases), an indexer is not classified as a variable.

If you pass an indexer as a ref or out parameter, you will get compile-time
errors, as the following example shows:

class Example
{
 public string[] array;
 public string this[int index]
 {
 get { ... }
 set { ... }
 }
}

class Test
{
 static void Main()
 {
 Example eg = new Example();

 ByRef(ref eg[0]); // Compile-time error
 ByOut(out eg[0]); // Compile-time error

 ByRef(ref eg.array[0]); // Okay
 ByOut(out eg.array[0]); // Okay
 }
 static void ByRef(ref string name) { ... }
 static void ByOut(out string name) { ... }
}

 Module 13: Properties and Indexers 23

Comparing Indexers to Properties

n Similarities

l Both use get and set accessors

l Neither have an address

l Neither can be void

n Differences

l Indexers can be overloaded

l Indexers cannot be static

Indexers are based on properties, and indexers share many of the features of
properties. Indexers also differ from properties in certain ways. To understand
indexers fully, it is helpful to compare them to properties.

Similarities with Properties
Indexers are similar to properties in many ways:

n Both use get and set accessors.

n Neither denote physical storage locations; therefore neither can be used as
ref or out parameters.

class Dictionary
{
 public string this[string index]
 {
 get { ... }
 set { ... }
 }
}
Dictionary oed = new Dictionary();
...
Method(ref oed["life"]); // Compile-time error
Method(out oed["life"]); // Compile-time error

n Neither can specify a void type.

For example, in the code above, oed["life"] is an expression of type
string and could not be an expression of type void.

24 Module 13: Properties and Indexers

Differences from Properties
It is also important to understand how indexers and properties differ:

n Identification

A property is identified only by its name. An indexer is identified by its
signature; that is, by the square brackets and the type of the indexing
parameters.

n Overloading

Since a property is identified only by its name, it cannot be overloaded.
However, since an indexer’s signature includes the types of its parameters,
an indexer can be overloaded.

n Static or dynamic

A property can be a static member, whereas an indexer is always an instance
member.

 Module 13: Properties and Indexers 25

Using Parameters to Define Indexers

n When Defining Indexers

l Specify at least one indexer parameter

l Specify a value for each parameter you specify

l Do not use ref or out parameter modifiers

There are three rules that you must follow to define indexers:

n Specify at least one indexer parameter.

n Specify a value for each parameter.

n Do not use ref or out as parameter modifiers.

Syntax Rules for Indexer Parameters
When defining an indexer, you must specify at least one parameter (index) for
the indexer. You have seen examples of this already. There are some
restrictions on the storage class of the parameter. For example, you cannot use
ref and out parameter modifiers:

class BadParameter
{
 // Compile-time error
 public string this[ref int index] { ... }
 public string this[out string index] { ... }
}

26 Module 13: Properties and Indexers

Multiple Parameters
You can specify more than one parameter in an indexer. The following code
provides an example:

class MultipleParameters
{
 public string this[int one, int two]
 {
 get { ... }
 set { ... }
 }
 ...
}

To use the indexer of the MultipleParameters class, you must specify two
values, as shown in the following code:

...
MultipleParameters mp = new MultipleParameters();
string s = mp[2,3];
...

This is the indexer equivalent of a multidimensional array.

 Module 13: Properties and Indexers 27

String Example

n The String Class

l Is an immutable class

l Uses an indexer (get accessor but no set accessor)

class String
{

public char this[int index]
{

get {
if (index < 0 || index >= Length)

throw new ArgumentOutOfRangeException();
...

}
}
...

}

class String
{

public char this[int index]
{

get {
if (index < 0 || index >= Length)

throw new ArgumentOutOfRangeException();
...

}
}
...

}

The string type is a fundamental type in C#. It is a keyword that is an alias for
the System.String class in the same way that int is an alias for the
System.Int32 struct.

The String Class
The String class is an immutable, sealed class. This means that when you call a
method on a string object, you are guaranteed that the method will not change
that string object. If a string method returns a string, it will be a new string.

The Trim Method
To remove trailing white space from a string, use the Trim method:

public sealed class String {
 ...
 public String Trim() { ... }
 ...
}

The Trim method returns a new trimmed string, but the string used to call
Trim remains untrimmed. The following code provides an example:

string s = "Trim me ";
string t = s.Trim();
Console.WriteLine(s); // Writes "Trim me "
Console.WriteLine(t); // Writes "Trim me"

28 Module 13: Properties and Indexers

The String Class Indexer
No method of the String class ever changes the string used to call the method.
You define the value of a string when it is created, and the value never changes.

Because of this design decision, the String class has an indexer that is declared
with a get accessor but no set accessor, as shown in the following example:

class String
{
 public char this[int index]
 {
 get {
 if (index < 0 || index >= Length)
 throw new ArgumentOutOfRangeException();
 ...
 }
 }
 ...
}
If you attempt to use a string indexer to write to the string, you will get a
compile-time error:

string s = "Sharp";
Console.WriteLine(s[0]); // Okay
s[0] = 'S'; // Compile-time error
s[4] = 'k'; // Compile-time error

The String class has a companion class called StringBuilder that has a read-
write indexer.

 Module 13: Properties and Indexers 29

BitArray Example

class BitArray
{

public bool this[int index]
{

get {
BoundsCheck(index);
return (bits[index >> 5] & (1 << index)) != 0;

}
set {

BoundsCheck(index);
if (value) {

bits[index >> 5] |= (1 << index);
} else {

bits[index >> 5] &= ~(1 << index);
}

}
}
private int[] bits;

}

class BitArray
{

public bool this[int index]
{
get {

BoundsCheck(index);
return (bits[index >> 5] & (1 << index)) != 0;

}
set {

BoundsCheck(index);
if (value) {

bits[index >> 5] |= (1 << index);
} else {

bits[index >> 5] &= ~(1 << index);
}

}
}
private int[] bits;

}

This is a more complex example of indexers, based on the BitArray class from
the .NET Framework SDK. By implementing indexers, the BitArray class uses
less memory than the corresponding Boolean array.

Comparing the BitArray Class to a Boolean Array
The following example shows how to create an array of Boolean flags:

bool[] flags = new bool[32];
flags[12] = false;

This code works, but unfortunately it uses a single byte to store each bool. The
state of a Boolean flag (true or false) can be stored in a single bit, but a byte is
eight bits wide. Therefore, an array of bools uses eight times more memory than
it needs.

30 Module 13: Properties and Indexers

To address this memory issue, the .NET SDK provides the BitArray class,
which implements indexers and also uses less memory than the corresponding
bool array. Following is an example:

class BitArray
{
 public bool this[int index]
 {
 get {
 BoundsCheck(index);
 return (bits[index >> 5] & (1 << index)) != 0;
 }
 set {
 BoundsCheck(index);
 if (value) {
 bits[index >> 5] |= (1 << index);
 } else {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }
 private int[] bits;
}

 Module 13: Properties and Indexers 31

How BitArray Works
To learn how the BitArray class works, consider step-by-step what the code is
doing:

1. Store 32 bools in one int.

BitArray uses substantially less memory than a corresponding bool array
by storing the state for 32 bools in one int. (Remember that int is an alias
for Int32.)

2. Implement an indexer:

public bool this[int index]

The BitArray class contains an indexer to allow a BitArray object to be
used in an array-like manner. In fact, a BitArray can be used exactly like a
bool [].

BitArray flags = new BitArray(32);
flags[12] = false;

3. Extract the individual bits.

To extract the individual bits, you must shift the bits. For example, the
following expression appears frequently because shifting right by 5 bits is
equivalent to dividing by 32, because 2*2*2*2*2 == 2^5 == 32. Therefore,
the following shift expression locates the int that holds the bit at position
index:

index >> 5

4. Determine the value of the correct bit.

After the correct int is found, the individual bit (out of all 32) still needs to
be determined. You can do this by using the following expression:

1 << index

To understand how this works, you need to know that when you shift an int
left only the lowest 5 bits of the second argument are used. (Again, only 5
bits are used because the int being shifted has 32 bits.) In other words, the
above shift-left expression is semantically the same as the following:

1 << (index % 32)

32 Module 13: Properties and Indexers

More Details About BitArray
Following is the BitArray class in more detail:

class BitArray
{
 public BitArray(int length)
 {
 if (length < 0) throw new ArgumentException();
 bits = new int[((length - 1) >> 5) + 1];
 this.length = length;
 }

 public int Length
 {
 get { return length; }
 }

 public bool this[int index]
 {
 get {
 BoundsCheck(index);
 return (bits[index >> 5] & (1 << index)) != 0;
 }
 set {
 BoundsCheck(index);
 if (value) {
 bits[index >> 5] |= (1 << index);
 } else {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }

 private void BoundsCheck(int index)
 {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 }

 private int[] bits;
 private int length;
}

 Module 13: Properties and Indexers 33

Lab 13: Using Properties and Indexers

Objectives
After completing this lab, you will be able to:

n Create properties to encapsulate data within a class.

n Define indexers for accessing classes by using array-like notation.

Prerequisites
Before working on this lab, you must be able to:

n Create and use classes.

n Use arrays and collections.

Estimated time to complete this lab: 30 minutes

34 Module 13: Properties and Indexers

Exercise 1
Enhancing the Account Class

In this exercise, you will remove the bank account number and bank account
type methods from the BankAccount class (which you created in previous labs
and is provided here) and replace them with read-only properties. You will also
add to the BankAccount class a read/write string property for the account
holder’s name.

å To change the account number and type methods into read-only
properties

1. Open the Bank.sln project in the install folder\Labs\Lab13\
Exercise 1\Starter \Bank folder.

2. In the BankAccount class, replace the method called Number with a read-
only property (a property that has a get accessor but no set accessor). This is
shown in the following code:

public long Number
{
 get { return accNo; }
}

3. Compile the project.

You will receive error messages. This is because BankAccount.Number is
still being used as a method in the four overloaded Bank.CreateAccount
methods.

4. Change these four Bank.CreateAccount methods to access the bank
account number as a property.

For example , change

long accNo = newAcc.Number();

to

long accNo = newAcc.Number;

5. Save and compile the project.

6. In the BankAccount class, replace the method called Type with a read-only
property whose get accessor returns accType.Format.

7. Save and compile the project.

 Module 13: Properties and Indexers 35

å To add to the BankAccount class a read/write property for the account
holder

1. Add a private field called holder of type string to the BankAccount class.

2. Add a public read/write property called Holder (note the capital “H”) of
type string to the BankAccount class.

The get and set accessors of this property will use the holder string you
have just created:

public string Holder
{
 get { return this.holder; }
 set { holder = value; }
}

3. Save your work, compile the project, and correct any errors.

4. Modify the BankAccount.ToString method so that the string it returns
contains the account holder’s name in addition to the account number, type,
and balance.

å To test the properties

1. Open the TestHarness.sln test harness in the install folder\
Labs\Lab13\Exercise 1\Starter\TestHarness folder.

2. Add a reference to the Bank library (the DLL that contains the components
that you worked on in the previous two procedures) by performing the
following steps:

a. Expand the project in Solution Explorer.

b. Right-click References, and then click Add Reference .

c. Click Browse.

d. Navigate to the install folder\Labs\Lab13\Exercise
1\Starter \Bank\Bin\Debug folder.

e. Click Bank.dll, click Open, and then click OK.

3. Add two statements to the Main method of the CreateAccount class, as
follows:

• Set the name of the holder of acc1 to “Sid.”

• Set the name of the holder of acc2 to “Ted.”

4. Add statements that retrieve and print the number and type of each account.

5. Save your work, compile the project, and correct any errors.

6. Run the project and verify that the account numbers, the account types, and
the names “Sid” and “Ted” appear.

36 Module 13: Properties and Indexers

Exercise 2
Modifying the Transaction Class

In this exercise, you will modify the BankTransaction class (which you
developed in previous labs and which is provided here). As you may recall, the
BankTransaction class was created for holding information about a financial
transaction pertaining to a BankAccount object.

You will replace the methods When and Amount with a pair of read-only
properties. (When returns the date of the transaction, Amount returns the
transaction amount.)

å To change the When method into a read-only property

1. Open the Bank.sln project in the install folder\Labs\Lab13\
Exercise 2\Starter \Bank folder.

2. In the BankTransaction class, replace the method called When with a
read-only property of the same name.

3. Compile the project.

You will receive an error message. This is because
BankTransaction.When is still being used as a method in
Audit.RecordTransaction. (The Audit class records an audit trail of
transaction information, so it uses the When and Amount methods to find
the date and amount of each transaction.)

4. Change the Audit.RecordTransaction method so that it accesses the When
member as a property.

5. Save your work, compile the project, and correct any errors.

å To change Amount into a read-only property

1. In the BankTransaction class, replace the method called Amount with a
read-only property.

2. Compile the project.

You will receive error messages. This is because
BankTransaction.Amount is still being used as a method in
Audit.RecordTransaction.

3. Change the Audit.RecordTransaction method so that it accesses the
Amount member as a property.

4. Save your work, compile the project, and correct any errors.

 Module 13: Properties and Indexers 37

å To test the properties

1. Open the TestHarness.sln test harness in the install folder\
Labs\Lab13\Exercise 2\Starter\TestHarness folder.

2. Add a reference to the Bank library (the DLL that contains the components
that you worked on in the previous procedures) by performing the following
steps:

a. Expand the project in Solution Explorer.

b. Right-click References, and then click Add Reference .

c. Click Browse.

d. Navigate to the install folder\Labs\Lab13\
Exercise 2\Starter\Bank\Bin\Debug folder.

e. Click Bank.dll, click Open, and then click OK.

3. Add statements to the Main method of the CreateAccount class that will:

a. Deposit money into accounts acc1 and acc2. (Use the Deposit method,
and make up your own numbers.)

b. Withdraw money from accounts acc1 and acc2. (Use the Withdraw
method.)

c. Print the transaction history for each account. A method called Write
has been supplied at the end of the test harness. You pass it an account
whose transaction history you want to display. It uses and tests the
When and Amount properties of the BankTransaction class.
Following is an example:

Write(acc1);

4. Save your work, compile the project, and correct any errors.

5. Run the project, and verify that the transaction details appear as expected.

38 Module 13: Properties and Indexers

Exercise 3
Creating and Using an Indexer

In this exercise, you will add an indexer to the BankAccount class to provide
access to any of the BankTransaction objects cached in the internal array.

The transactions that belong to an account are accessible by means of a queue
(System.Collections.Queue) that is in the BankAccount object itself.

You will define an indexer on the BankAccount class that retrieves the
transaction at the specified point in the queue or returns null if no transaction
exists at that point. For example,

myAcc.AccountTransactions[2]

will return transaction number 2, the third one in the queue.

The GetEnumerator method of System.Collections.Queue will be useful in
this exercise.

å To declare a read-only BankAccount indexer

1. Open the Bank.sln project in the install folder\Labs\Lab13\
Exercise 3\Starter \Bank folder.

2. In the BankAccount class, declare a public indexer that returns a
BankTransaction and takes a single int parameter called index, as follows:

public BankTransaction this[int index]
{
 ...
}

3. Add a get accessor to the body of the indexer, and implement it with a
single
return new BankTransaction(99);
statement, as follows.

public BankTransaction this[int index]
{
 get { return new BankTransaction(99); }
}

The purpose of this step is only to test the syntax of the indexer. Later, you
will implement the indexer properly.

4. Save your work, compile the project, and correct any errors.

 Module 13: Properties and Indexers 39

å To create transactions

1. Open the TestHarness.sln test harness in the install folder\
Labs\Lab13\Exercise 3\Starter\TestHarness folder.

2. Add a reference to the Bank library (the DLL that contains the components
that you worked on in the previous stage) by performing the following steps:

a. Expand the project in Solution Explorer.

b. Right-click References, and then click Add Reference .

c. Click Browse.

d. Navigate to the install folder\Labs\Lab13\
Exercise 3\Starter\Bank\Bin\Debug folder.

e. Click Bank.dll, click Open, and then click OK.

3. Create some transactions by adding the following statements to the end of
the CreateAccount.Main method:

for (int i = 0; i < 5; i++) {
 acc1.Deposit(100);
 acc1.Withdraw(50);
}
Write(acc1);

The calls to Deposit and Withdraw create transactions.

4. Save your work, compile the project, and correct any errors.

Run the project, and verify that the Deposit and Withdraw transactions are
correctly displayed.

40 Module 13: Properties and Indexers

å To call the BankAccount indexer

1. The last few statements of the CreateAccount.Write method currently
display the transactions using by a foreach statement, as follows:

Queue tranQueue = acc.Transactions();
foreach (BankTransaction tran in tranQueue) {
 Console.WriteLine("Date: {0}\tAmount: {1}", tran.When,
Êtran.Amount);
}

2. Change the way transactions are displayed as follows:

a. Replace this foreach statement with a for statement that increments an
int variable called counter from zero to the value returned from
tranQueue.Count.

b. Inside the for statement, call the BankAccount indexer that you
declared in the previous procedure. Use counter as the subscript
parameter, and save the returned BankTransaction in a local variable
called tran.

c. Print the details from tran:

for (int counter = 0; counter < tranQueue.Count;
Êcounter++) {
 BankTransaction tran = acc[counter];
 Console.WriteLine("Date: {0}\tAmount: {1}", tran.When,
Êtran.Amount);
}

3. Save your work, compile the project, and correct any errors.

4. Run the project.

It will display a series of transactions with a value of 99 (the temporary test
value that you used earlier) because the indexer has not yet been fully
implemented.

å To complete the BankAccount indexer

1. Return to the Bank project (Bank.sln in the install folder\
Labs\Lab13\Exercise 3\Starter\Bank folder).

2. In the BankAccount class, delete the
return new BankTransaction(99);
statement from the body of the indexer.

3. The BankAccount transactions are held in a private field called tranQueue
of type System.Collections.Queue. This Queue class does not have an
indexer, so to access a given element you will need to manually iterate
through the class. The process for doing this is as follows:

a. Declare a variable of type IEnumerator and initialize it by using the
GetEnumerator method of tranQueue. (All queues provide an
enumerator to allow you to step through them.)

b. Iterate through the queue n times, using the MoveNext method of the
IEnumerator variable to move to the next item in the queue.

c. Return the BankTransaction found at the nth location.

 Module 13: Properties and Indexers 41

Your code should look as follows:

IEnumerator ie = tranQueue.GetEnumerator();
for (int i = 0; i <= index; i++) {
 ie.MoveNext();
}
BankTransaction tran = (BankTransaction)ie.Current;
return tran;

4. Check that the int parameter index is neither greater than tranQueue.Count
nor less than zero.

Check for this before iterating through tranQueue.

5. The complete code for the indexer should look as follows:

public BankTransaction this[int index]
{
 get
 {
 if (index < 0 || index >= tranQueue.Count)
 return null;

 IEnumerator ie = tranQueue.GetEnumerator();
 for (int i = 0; i <= index; i++) {
 ie.MoveNext();
 }
 BankTransaction tran = (BankTransaction)ie.Current;
 return tran;
 }
}

6. Save your work, compile the project, and correct any errors.

7. Return to TestHarness and execute it.

Verify that all ten transactions appear correctly.

42 Module 13: Properties and Indexers

Review

n Using Properties

n Using Indexers

1. Declare a Font class that contains a read-only property called Name of type
string.

 Module 13: Properties and Indexers 43

2. Declare a DialogBox class that contains a read/write property called
Caption of type string.

3. Declare a MutableString class that contains a read/write indexer of type
char that expects a single int parameter.

44 Module 13: Properties and Indexers

4. Declare a Graph class that contains a read-only indexer of type double that
expects a single parameter of type Point.

