

Contents

Overview 1

Overview of Attributes 2

Defining Custom Attributes 13

Retrieving Attribute Values 22
Lab 14: Defining and Using Attributes 26

Review 34

Module 14: Attributes

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 14: Attributes 1

Overview

n Overview of Attributes

n Defining Custom Attributes

n Retrieving Attribute Values

Attributes are a simple technique for adding metadata to classes. They can be
useful when you need to build components.

In this module, you will learn the purpose of attributes and the function that
they perform in C# applications. You will learn about attribute syntax and how
to use some of the predefined attributes in the Microsoft® .NET environment.
You will also learn to create custom user-defined attributes. Finally, you will
learn how classes and other object types can implement and use these custom
attributes to query attribute information at run time.

After completing this module, you will be able to:

n Use common predefined attributes.

n Create simple custom attributes.

n Query attribute information at run time.

2 Module 14: Attributes

u Overview of Attributes

n Introduction to Attributes

n Applying Attributes

n Common Predefined Attributes

n Using the Conditional Attribute

n Using the DllImport Attribute

n Using the Transaction Attribute

With the introduction of attributes, the C# language provides a convenient
technique that will help handle tasks such as changing the behavior of the
runtime, obtaining transaction information about an object, conveying
organizational information to a designer, and handling unmanaged code.

In this section you will learn what attributes are and which tasks you can
perform with them. You will learn the syntax for using attributes in your code,
and you will be introduced to some of the predefined attributes that are
available in the .NET Framework.

 Module 14: Attributes 3

Introduction to Attributes

n Attributes Are:

l Declarative tags that convey information to the runtime

l Stored with the metadata of the element

n .NET Framework Provides Predefined Attributes

l The runtime contains code to examine values of
attributes and act on them

The .NET Framework provides attributes so that you can extend the capabilities
of the C# language. An attribute is a declarative tag that you use to convey
information to the runtime about the behavior of programmatic elements such
as classes, data structures, enumerators, and assemblies.

You can think of attributes as annotations that your programs can store and use.
In most cases, you write the code that retrieves the values of an attribute in
addition to the code that performs a change in behavior at run time. In its
simplest form, an attribute is an extended way to document your code.

You can apply attributes to many elements of the source code. Information
about the attributes is stored with the metadata of the elements they are
associated with.

The .NET Framework is equipped with a number of predefined attributes. The
code to examine them and act upon the values they contain is also incorporated
as a part of the runtime and .NET Framework SDK.

4 Module 14: Attributes

Applying Attributes

n Syntax: Use Square Brackets to Specify an Attribute

n To Apply Multiple Attributes to an Element, You Can:

l Specify multiple attributes in separate square brackets

l Use a single square bracket and separate attributes with
commas

l For some elements such as assemblies, specify the
element name associated with the attribute explicitly

[attribute(positional_parameters,named_parameter=value, ...)]
element
[attribute(positional_parameters,named_parameter=value, ...)]
element

You can apply attributes to different kinds of programming elements. These
elements include assemblies, modules, classes, structs, enums, constructors,
methods, properties, fields, events, interfaces, parameters, return values, and
delegates.

Attribute Syntax
To specify an attribute and associate it with a programming element, use the
following general syntax:

[attribute(positional_parameters,name_parameter=value, ...)]
element

You specify an attribute name and its values within square brackets ([and])
before the programmatic element to which you want to apply the attribute. Most
attributes take one or more parameters, which can be either positional or named.

You specify a positional parameter in a defined position in the parameter list, as
you would specify parameters for methods. Any named parameter values
follow the positional parameters. Positional parameters are used to specify
essential information, whereas named parameters are used to convey optional
information in an attribute.

Before using an unfamiliar attribute, it is a good practice to check the
documentation for the attribute to find out which parameters are available and
whether they should be positional or named.

Tip

 Module 14: Attributes 5

Example
As an example of using attributes, consider the following code, in which the
DefaultEvent attribute is applied on a class by using a positional string
parameter, ShowResult:

[DefaultEvent("ShowResult")]
public class Calculator: System.WinForms.UserControl
{
 ...
}

Applying Multiple Attributes
You can apply more than one attribute to an element. You can enclose each
attribute in its own set of square brackets, although you can also enclose
multiple attributes, separated with commas, in the same set of square brackets.

In some circumstances, you must specify exactly which element an attribute is
associated with. For example, in the case of assembly attributes, place them
after any using clauses but before any code, and explicitly specify them as
attributes of the assembly.

The following example shows how to use the CLSCompliant assembly
attribute. This attribute indicates whether or not an assembly strictly conforms
to the Common Language Specification.

using System;
[assembly:CLSCompliant(true)]

class MyClass
{
 ...
}

6 Module 14: Attributes

Common Predefined Attributes

n .NET Provides Many Predefined Attributes

l General attributes

l COM interoperability attributes

l Transaction handling attributes

l Visual designer component building attributes

g

The capabilities of predefined attributes in the .NET Framework encompass a
wide range of areas, from interoperability with COM to compatibility with
visual design tools.

This topic describes some of the common predefined attributes that are
provided by the .NET Framework. However, it is not intended to be
comprehensive. For more information about predefined attributes, refer to the
Microsoft Visual Studio.NET Help documents.

General Attributes
The following list summarizes some of the general attributes that are provided
by the .NET Framework.

Attribute Applicable to Description

Conditional Method Tests to see whether a named symbol is

defined. If it is defined, any calls to the
method are executed normally. If the symbol
is not defined, the call is not generated.

DllImport Method Indicates that the method is implemented in
unmanaged code, in the specified DLL. It
causes the DLL to be loaded at run time and
the named method to execute.

 Module 14: Attributes 7

COM Interoperability Attributes
When using the attributes to provide interoperability with COM, the goal is to
ensure that using COM components from the managed .NET environment is as
seamless as possible. The .NET Framework has many attributes relating to
COM interoperability. Some of these are listed in the following table.

Attribute Applicable to Description

ComImport Class Indicates that a class or interface

definition was imported from a COM
type library.

ComRegisterFunction Assembly Specifies the method to be called when
a .NET assembly is registered for use
from COM.

ComUnregisterFunction Assembly Specifies the method to be called when
a .NET assembly is unregistered for use
from COM.

DispId Method,
property

Indicates which dispatch ID is to be used
for the method or property.

HasDefaultInterface Class Indicates that the class has an explicit
default COM interface.

In Field,
parameter

Indicates that the field or parameter is an
input parameter.

MarshalAs Field,
parameter

Specifies how data should be marshaled
between COM and the managed
environment.

ProgId Class Specifies which prog ID is to be used for
the class.

Out Field,
parameter

Indicates that data should be marshaled
out from the callee back to caller.

InterfaceType Interface Specifies whether a managed interface is
IDispatch, IUnknown, or dual when it is
exposed to COM.

For more information about COM interoperability, search for "Microsoft
ComServices" in the .NET Framework SDK Help documents.

Transaction Handling Attributes
Components running in a COM+ environment use transaction management.
The attribute you use for this purpose is shown in the following table.

Attribute Applicable to Description

Transaction Class Specifies whether the component supports

transactions, requires a transaction, should be
invoked in the context of a new transaction, or
whether transactions are ignored or
unsupported.

8 Module 14: Attributes

Visual Designer Component-Building Attributes
Developers who build components for a visual designer use the attributes listed
in the following table.

Attribute Applicable to Description

Bindable Property Specifies whether the property can be data-

bound.

DefaultProperty Class Specifies the default property for the
component.

DefaultValue Property Indicates that the property is the default value
for the component.

Localizable Property Specifies that this property should be persisted
to the resources file when forms are localized.

Persistable Property Indicates whether the property should be
persisted and how it should be persisted.

DefaultEvent Class Specifies the default event for the component.

Browseable Property,
event

Indicates whether the property or event should
be displayed in the property window of the
visual designer.

Category Property,
event

Specifies the category into which the visual
designer should place this property or event in
the property window.

Description Property,
event

Defines a brief piece of text to be displayed at
the bottom of the property window in the visual
designer when this property or event is selected.

 Module 14: Attributes 9

Using the Conditional Attribute

n Serves As a Debugging Tool

l Causes conditional compilation of method calls, depending on the
value of a programmer-defined symbol

l Does not cause conditional compilation of the method itself

n Restrictions on Methods

l Must have return type of void

l Must not be declared as override

l Must not be from an inherited interface

class MyClass
{

[Conditional ("DEBUGGING")]
public static void MyMethod()
{

...
}

}

class MyClass
{

[Conditional ("DEBUGGING")]
public static void MyMethod()
{

...
}

}

You can use the Conditional attribute as a debugging aid in your C# code. This
attribute causes conditional compilation of method calls, depending on the
value of a symbol that you define. It lets you invoke methods that, for example,
display the values of variables, while you test and debug code. After you have
debugged your program, you can “undefine” the symbol and recompile your
code without changing anything else. (Or you can simply remove the symbol
from the command line, and not change anything.)

Example
The following example shows how to use the Conditional attribute. In this
example, the MyMethod method in MyClass is tagged with the Conditional
attribute by the symbol DEBUGGING:

class MyClass
{
 [Conditional ("DEBUGGING")]
 public static void MyMethod()
 {
 ...
 }
}

10 Module 14: Attributes

The symbol DEBUGGING is defined as follows:

#define DEBUGGING

class AnotherClass
{
 public static void Test()
 {
 MyClass.MyMethod();
 }
}

As long as the symbol DEBUGGING remains defined when the method call is
compiled, the method call will operate normally. When DEBUGGING is
undefined, the compiler will omit calls to the method. Therefore, when you run
the program, it will be treated as though that line of code does not exist.

You can define the symbol in one of two ways. You can either add a #define
directive to the code as shown in the preceding example, or define the symbol
from the command line when you compile your program.

Restrictions on Methods
The methods to which you can apply a Conditional attribute are subject to a
number of restrictions. In particular, they must have a return type of void, they
must not be marked as override, and they must not be the implementation of a
method from an inherited interface.

The Conditional attribute does not cause conditional compilation of the
method itself. The attribute only determines the action that will occur when the
method is called. If you require conditional compilation of a method, then you
must use the #if and #endif directives in your code.

Note

 Module 14: Attributes 11

Using the DllImport Attribute

n With the DllImport Attribute, You Can:

l Invoke unmanaged code in DLLs from a C# environment

l Tag an external method to show that it resides in an
unmanaged DLL

[DllImport("MyDLL.dll", EntryPoint="MessageBox")]
public static extern int MyFunction(string param1);

public class MyClass()
{

...
int result = MyFunction("Hello Unmanaged Code");
...

}

[DllImport("MyDLL.dll", EntryPoint="MessageBox")]
public static extern int MyFunction(string param1);

public class MyClass()
{

...
int result = MyFunction("Hello Unmanaged Code");
...

}

You can use the DllImport attribute to invoke unmanaged code in your C#
programs. Unmanaged code is the term used for code that has been developed
outside the .NET environment (that is, standard C compiled into DLL files). By
using the DllImport attribute, you can invoke unmanaged code residing in
dynamic -link libraries (DLLs) from your managed C# environment.

Invoking Unmanaged Code
The DllImport attribute allows you to tag an extern method as residing in an
unmanaged DLL. When your code calls this method, the Common Language
Runtime locates the DLL, loads it into the memory of your process, marshals
parameters as necessary, and transfers control to the address at the beginning of
the unmanaged code. This is unlike a normal program, which does not have
direct access to the memory that is allocated to it. The following code provides
an example of how to invoke unmanaged code:

[DllImport("MyDLL.dll", EntryPoint="MessageBox")]
public static extern int MyFunction(string param1);

public class MyClass()
{
 ...
 int result = MyFunction("Hello Unmanaged Code");
 ...
}

12 Module 14: Attributes

Using the Transaction Attribute

n To Manage Transactions in COM+

l Specify that your component be included when a
transaction commit is requested

l Use a Transaction attribute on the class that implements
the component

[Transaction(TransactionOption.Required)]
public class MyTransactionalComponent
{

...
}

[Transaction(TransactionOption.Required)]
public class MyTransactionalComponent
{
...

}

It is likely that, as a Microsoft Visual Basic® or C++ developer working in a
Microsoft environment, you are familiar with technologies such as COM+. An
important feature of COM+ is that it allows you to develop components that can
participate in distributed transactions, which are transactions that can span
multiple databases, machines, and components.

Managing Transactions in COM+
Writing code to guarantee a correct transaction commit in a distributed
environment is difficult. However, if you use COM+, it takes care of managing
the transactional integrity of the system and coordinating events on the network.

In this case, you only need to specify that your component be included when an
application that uses your component requests a transaction commit. To make
this specification, you can use a Transaction attribute on the class that
implements the component, as follows:

[Transaction(TransactionOption.Required)]
public class MyTransactionalComponent
{
 ...
}

The Transaction attribute is one of the predefined .NET Framework attributes
that the .NET runtime interprets automatically.

 Module 14: Attributes 13

u Defining Custom Attributes

n Defining Custom Attribute Scope

n Defining an Attribute Class

n Processing a Custom Attribute

n Using Multiple Attributes

When you encounter a situation in which none of the predefined .NET
Framework attributes satisfy your requirements, you can create your own
attribute. Such a custom attribute will provide properties that allow you to store
and retrieve information from the attribute.

Like predefined attributes, custom attributes are objects that are associated with
one or more programmatic elements. They are stored with the metadata of their
associated elements, and they provide mechanisms for a program to retrieve
their values.

In this section, you will learn how to define and use your own custom attributes.

14 Module 14: Attributes

Defining Custom Attribute Scope

n Use the AttributeUsage Tag to Define Scope

l Example

n Use the Bitwise “ or” Operator (|) to Specify Multiple
Elements

l Example

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class MyAttribute: System.Attribute
{ ... }

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
public class MyAttribute: System.Attribute
{ ... }

[AttributeUsage(AttributeTargets.Method)]
public class MyAttribute: System.Attribute
{ ... }

[AttributeUsage(AttributeTargets.Method)]
public class MyAttribute: System.Attribute
{ ... }

As with some predefined attributes, you must explicitly specify the
programming element to which you want to apply a custom attribute. To do so,
you annotate your custom attribute with an AttributeUsage tag as shown in the
following example:

[AttributeUsage(target_elements)]
public class MyAttribute: System.Attribute
{ ... }

Defining Attribute Scope
The parameter to AttributeUsage contains values from the
System.AttributeTargets enumeration to specify how the custom attribute can
be used. The members of this enumeration are summarized in the following
table.

Member name Attribute can be applied to

Class class

Constructor constructor

Delegate delegate

Enum enum

Event event

Field field

Interface interface

Method method

Module module

 Module 14: Attributes 15

(continued)
Member name Attribute can be applied to

Parameter parameter

Property property

ReturnValue return value

Struct struct

Assembly assembly

ClassMembers class, struct, enum, constructor, method, property, field, event,
delegate, interface

All Any element

Example of Using Custom Attributes
To specify that the MyAttribute custom attribute can be applied only to
methods, use the following code:

[AttributeUsage(AttributeTargets.Method)]
public class MyAttribute: System.Attribute
{
...
}

Specifying Multiple Elements
If the attribute can be appli ed to more than one element type, use the bitwise
“or” operator (|) to specify multiple target types. For example, if MyAttribute
can also be applied to constructors, the earlier code will be modified as follows:

[AttributeUsage(AttributeTargets.Method |
ÊAttributeTargets.Constructor)]
public class MyAttribute: System.Attribute
{
...
}

If a developer attempts to use the MyAttribute in a context different from that
which is defined by AttributeUsage , the developer’s code will not compile.

16 Module 14: Attributes

Defining an Attribute Class

n Deriving an Attribute Class

l All attribute classes must derive from System.Attribute,
directly or indirectly

l Suffix name of attribute class with “Attribute”

n Components of an Attribute Class

l Define a single constructor for each attribute class by
using a positional parameter

l Use properties to set an optional value by using a
named parameter

After you define the scope of a custom attribute, you need to specify the way
you want the custom attribute to behave. For this purpose, you must define an
attribute class. Such a class will define the name of the attribute, how it can be
created, and the information that it will store.

The .NET Framework SDK provides a base class, System.Attribute, that you
must use to derive custom attribute classes and to access the values held in
custom attributes.

Deriving an Attribute Class
All custom attribute classes must derive from System.Attribute, either directly
or indirectly. The following code provides an example:

public class DeveloperInfoAttribute: System.Attribute
{
 ...
 public DeveloperInfoAtribute(string developer, string date)
 public(string Date)
 {
 get { ... }
 set { ... }
 }
}

It is a good practice to append the name of a custom attribute class with the
suffix “Attribute,” as in DeveloperInfoAttribute. This makes it easier to
distinguish the attribute classes from the non-attribute classes.

 Module 14: Attributes 17

Components of an Attribute Class
All attribute classes must have a constructor. For example, if the
DeveloperInfo attribute expects the name of the developer as a string
parameter, it must have a constructor that accepts a string parameter.

A custom attribute must define a single constructor that sets the mandatory
information. The positional parameter or parameters of the attribute pass this
information to the constructor. If an attribute has optional data, then it is
attempting to overload the constructor. This is not a good practice to adopt. Use
named parameters to provide optional data.

An attribute class can, however, provide properties to get and set data.
Therefore, you must use properties to set optional values, if required. Then a
developer can specify the optional values as named parameters when using the
attribute.

For example, the DeveloperInfoAttribute provides a Date property. You can
call the set method of the Date property to set the named parameter: Date. The
developer name, Bert , for example, is the positional parameter that is passed to
the constructor of the attribute:

[DeveloperInfoAttribute("Bert", Date="11-11-2000")]
public class MyClass
{
 ...
}

18 Module 14: Attributes

Processing a Custom Attribute

The Compilation Process

1. Searches for the Attribute Class

2. Checks the Scope of the Attribute

3. Checks for a Constructor in the Attribute

4. Creates an Instance of the Object

5. Checks for a Named Parameter

6. Sets Field or Property to Named Parameter Value

7. Saves Current State of Attribute Class

When the compiler encounters an attribute on a programming element, the
compiler uses the following process to determine how to apply the attribute:

1. Searches for the attribute class

2. Checks the scope of the attribute

3. Checks for a constructor in the attribute

4. Creates an instance of the object

5. Checks for a named parameter

6. Sets the field or property to a named parameter value

7. Saves the current state of the attribute class

To be completely accurate, the compiler actually verifies that it could apply the
attribute, and then stores the information to do so in the metadata. The compiler
does not create attribute instances at compile time.

 Module 14: Attributes 19

Example
To learn more about how the compiler handles attributes, consider the
following example:

[AttributeUsage(AttributeTargets.Class)]
public class DeveloperInfoAttribute: System.Attribute
{
 ...
}
.....
{
.....
}

[DeveloperInfo("Bert", Date="11-11-2000")]
public class MyClass
{
...
}

As is mentioned in the previous topic, it is a good practice to add the
suffix “Attribute” to the name of an attribute class. Strictly speaking, it is not
necessary to do so. Even if you omit the Attribute suffix as shown in the
example, your code will still compile correctly. However, without the Attribute
suffix there are potential issues concerning how the compiler searches for
classes. Always use the Attribute suffix.

The Compilation Process
In the preceding example, when MyClass is compiled, the compiler will search
for an attribute class called DevloperInfoAttribute. If the class cannot be
located, the compiler will then search for DeveloperInfo.

After it finds DeveloperInfo, the compiler will check whether the attribute is
allowed on a class. Then it will check for a constructor that matches the
parameters specified in the attribute use. If it finds one, it creates an instance of
the object by calling the constructor with the specified values.

If there is a named parameter, the compiler matches the name of the parameter
with a field or property in the attribute class, and then sets the field or property
to the specified value. Then the current state of the attribute class is saved to the
metadata for the program element on which it is applied.

Note

20 Module 14: Attributes

Using Multiple Attributes

n An Element Can Have More Than One Attribute

l Define both attributes separately

n An Element Can Have More Than One Instance of The
Same Attribute

l Use AllowMultiple = true

You can apply more than one attribute to a programming element, and you can
use multiple instances of the same attribute in an application.

Using Multiple Attributes
You can apply more than one attribute to a programming element. For example,
the following code shows how you can tag the FinancialComponent class, a
Microsoft Windows® control, with two attributes: Transaction and
DefaultProperty:

[Transaction(TransactionOption.Required)]
[DefaultProperty("Balance")]
public class FinancialComponent: System.WinForms.UserControl
{
 ...
 public long Balance
 {
 ...
 }
}

 Module 14: Attributes 21

Using the Same Attribute Multiple Times
The default behavior of a custom attribute does not permit multiple instances of
the attribute. However, under some circumstances it might make sense to allow
an attribute to be used on the same element more than once.

An example of this is the custom attribute DeveloperInfo. This attribute allows
you to record the name of the developer that wrote a class. If more than one
developer was involved in the development, you need to use the DeveloperInfo
attribute more than once. For an attribute to permit this, you mus t mark it as
AllowMultiple in the AttributeUsage attribute, as follows:

[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
public class DeveloperInfoAttribute: System.Attribute
{
 ...
}

22 Module 14: Attributes

u Retrieving Attribute Values

n Examining Class Metadata

n Querying for Attribute Information

After you have applied attributes to programming elements in your code, it is
useful to be able to determine the values of the attributes. In this section, you
will learn how to use reflection to examine the attribute metadata of a class and
query classes for attribute information.

 Module 14: Attributes 23

Examining Class Metadata

n To Query Class Metadata Information:

l Use the MemberInfo class in System.Reflection

l Populate a MemberInfo object by using System.Type

l Create a System.Type object by using the typeof
operator

n Example

System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);
System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);

The .NET runtime supplies a mechanism called reflection that allows you to
query information held in metadata. Metadata is where attribute information is
stored.

Using the MemberInfo Class
The .NET Framework provides a namespace named System.Reflection, which
contains classes that you can use for examining metadata. One particular class
in this namespace— the MemberInfo class— is very useful if you need to find
out about the attributes of a class.

To populate a MemberInfo array, you can use the GetMembers method of the
System.Type object. To create this object, you use the typeof operator with a
class or any other element, as shown in the following code:

System.Reflection.MemberInfo[] memberInfoArray;
memberInfoArray = typeof(MyClass).GetMembers();
...

Once created, the typeInfo variable can be queried for metadata information
about the class MyClass.

If you need more detailed information, for example, if you want to
discover the values of attributes that a method has, you can use a MethodInfo
object. In addition, there are other “Info” classes: ConstructorInfo, EventInfo,
FieldInfo, ParameterInfo, and PropertyInfo. Detailed information about how
to use these classes is beyond the scope of this course, but you can find out
more by searching for “System.Reflection namespace” in the .NET Framework
SDK Help documents.

MemberInfo is actually the abstract base class of the other “Info” types.

Tip

Note

24 Module 14: Attributes

Querying for Attribute Information

n To Retrieve Attribute Information:

l Use GetCustomAttributes to retrieve all attribute
information as an array

l Iterate through the array and examine the values of each
element in the array

l Use the IsDefined method to determine whether a
particular attribute has been defined for a class

System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);
object[] attrs = typeInfo.GetCustomAttributes();

System.Reflection.MemberInfo typeInfo;
typeInfo = typeof(MyClass);
object[] attrs = typeInfo.GetCustomAttributes();

After you create the typeInfo variable, you can query it to get information about
the attributes applied to its associated class.

Retrieving Attribute Information
The MemberInfo object has a method called GetCustomAttributes. This
method retrieves the information about all attributes of a class and stores it in an
array, as shown in the following code:

object [] attrs = typeInfo.GetCustomAttributes();

You can then iterate through the array to find the values of the attributes that
you are interested in.

 Module 14: Attributes 25

Iterating Through Attributes
You can iterate through the array of attributes and examine the value of each
one in turn. In the following code, the only attribute of interest is
DeveloperInfoAttribute, and all the others are ignored. For each
DeveloperInfoAttribute found, the values of the Developer and Date
properties are displayed as follows:

...
object [] attrs = typeInfo.GetCustomAttributes();
foreach(Attribute atr in attrs) {
 if (atr is DeveloperInfoAttribute) {
 DeveloperInfoAttribute dia = (DeveloperInfoAttribute)atr;
 Console.WriteLine("{0} {1}", dia.Developer, dia.Date);
 }
}
...

GetCustomAttributes is an overloaded method. If you only want values
for that one attribute type, you can invoke this method by passing the type of
the custom attribute you are looking for through it, as shown in the following
code:

object [] attrs =
typeInfo.GetCustomAttributes(typeof(DeveloperInfoAttribute));

Using the IsDefined Method
If there are no matching attributes for a class, GetCustomAttributes returns a
null object reference. However, to find out whether a particular attribute has
been defined for a class, you can use the IsDefined method of MemberInfo as
follows:

Type devInfoAttrType = typeof(DeveloperInfoAttribute);
if (typeInfo.IsDefined(devInfoAttrType) {
 Object [] attrs =
 typeInfo.GetCustomAttributes(devInfoAttrType);
 ...
}

You can use Intermediate Language Disassembler (ILDASM) to see
these attributes inside the assembly.

Tip

Note

26 Module 14: Attributes

Lab 14: Defining and Using Attributes

Objectives
After completing this lab, you will be able to:

n Use the predefined Conditional attribute.

n Create a custom attribute.

n Add a custom attribute value to a class.

n Use reflection to query attribute values.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating classes in C#

n Defining constructors and methods

n Using the typeof operator

n Using properties and indexers in C#

Estimated time to complete this lab: 45 minutes

 Module 14: Attributes 27

Exercise 1
Using the Conditional Attribute

In this exercise, you will use the predefined Conditional attribute to
conditionally execute your code.

Conditional execution is a useful technique if you want to incorporate testing or
debugging code into a project but do not want to edit the project and remove the
debugging code after the system is complete and functioning correctly.

During this exercise, you will add a method called DumpToScreen to the
BankAccount class (which was created in earlier labs). This method will
display the details of the account. You will use the Conditional attribute to
execute this method depending on the value of a symbol called
DEBUG_ACCOUNT.

å To apply the Conditional attribute

1. Open the Audit.sln project in the install folder\Labs\Lab14\Starter\Bank
folder.

2. In the BankAccount class, add a public void method called
DumpToScreen that takes no parameters.

The method must display the contents of the account: account number,
account holder, account type, and account balance. The following code
shows a possible example of the method:

public void DumpToScreen()
{
 Console.WriteLine("Debugging account {0}. Holder is {1}.
ÊType is {2}. Balance is {3}",
 this.accNo, this.holder, this.accType, this.accBal);
}

3. Make use of the method’s dependence on the DEBUG_ACCOUNT symbol.

Add the following Conditional attribute before the method as follows:

[conditional("DEBUG_ACCOUNT")]

4. Compile your code and correct any errors.

28 Module 14: Attributes

å To test the Conditional attribute

1. Open the TestHarness.sln project in the install folder\
Labs\Lab14\Starter\TestHarness folder.

2. Add a reference to the Bank library.

a. In Solution Explorer, expand the TestHarness tree.

b. Right-click References, and then click Add Reference .

c. Click Browse, and then navigate to install folder\
Labs\Lab14\Starter\Bank\Bin\Debug.

d. Click Bank.dll, click Open, and then click OK.

3. Review the Main method of the CreateAccount class. Notice that it creates
a new bank account.

4. Add the following line of code to Main to call the DumpToScreen method
of myAccount:

myAccount.DumpToScreen();

5. Save your work, compile the project, and correct any errors.

6. Run the test harness.

Notice that nothing happens. This is because the DumpToScreen method
has not been called.

7. Use the ILDASM utility (ildasm) from the command line to examine install
folder\Labs\Lab14\Starter\Bank\Bin\Debug\Bank.dll.

You will see that the DumpToScreen method is present in the
BankAccount class.

8. Double-click the DumpToScreen method to display the Microsoft
intermediate language (MSIL) code.

You will see the Conditional attribute at the beginning of the method. The
problem is in the test harness. Because of the Conditional attribute on
DumpToScreen, the runtime will effectively ignore calls made to that
method if the DEBUG_ACCOUNT symbol is not defined when the calling
program is compiled. The call is made, but because DEBUG_ACCOUNT
is not defined, the runtime finishes the call immediately.

9. Close ILDASM.

10. Return to the test harness. At the top of the CreateAccount.cs file, before the
first using directive, add the following code:

#define DEBUG_ACCOUNT

This defines the DEBUG_ACCOUNT symbol.

11. Save and compile the test harness, correcting any errors.

12. Run the test harness.

Notice that the DumpToScreen method displays the information from
myAccount.

 Module 14: Attributes 29

Exercise 2
Defining and Using a Custom Attribute

In this exercise, you will create a custom attribute called
DeveloperInfoAttribute. This attribute will allow the name of the developer
and, optionally, the creation date of a class to be stored in the metadata of that
class. This attribute will permit multiple use because more than one developer
might be involved in the coding of a class.

You will then write a method that retrieves and displays all of the
DevloperInfoAttribute values for a class.

å To define a custom attribute class

1. Using Visual Studio.NET, create a new Microsoft Visual C#™ project, using
the information shown in the following table.

Element Value

Project Type Visual C# Projects

Template Class Library

Name CustomAttribute

Location install folder\Labs\Lab14\Starter

2. Change the name and file name of class Class1 to DeveloperInfoAttribute.

Make sure that you also change the name of the constructor.

3. Specify that the DeveloperInfoAttribute class is derived from
System.Attribute .

This attribute will be applicable to classes, enums, and structs only. It will
also be allowed to occur more than once when it is used.

4. Add the following AttributesUsage attribute before the class definition:

[AttributeUsage(AttributeTargets.Class |
ÊAttributeTargets.Enum | AttributeTargets.Struct,
ÊAllowMultiple=true)]

5. Document your attribute with a meaningful summary (between the
<summary> tags). Use the exercise description to help you.

6. The AttributesUsage attribute requires the name of the developer of the
class as a mandatory parameter and takes the date that the class was written
as an optional string parameter. Add private instance variables to hold this
information, as follows:

private string developerName;
private string dateCreated;

7. Modify the constructor so that it takes a single string parameter that is also
called developerName, and add a line of code to the constructor that
assigns this parameter to this.developerName.

8. Add a public string read-only property called Developer that can be used to
get the value of developerName. Do not write a set method.

30 Module 14: Attributes

9. Add another public string property that is called Date. This property should
have a get method that reads dateCreated and a set method that writes
dateCreated.

10. Compile the class and correct any errors.

Because the class is in a class library, the compilation process will produce
a DLL (CustomAttribute.dll) rather than a stand-alone executable program.
The complete code for the DeveloperInfoAttribute class follows:

namespace CustomAttribute
{
 using System;
 /// <summary>
 /// This class is a custom attribute that allows
 /// the name of the developer of a class to be stored
 /// with the metadata of that class.
 /// </summary>
 [AttributeUsage(AttributeTargets.Class |
 ÊAttributeTargets.Enum | AttributeTargets.Struct,
 ÊAllowMultiple=true)]
 public class DeveloperInfoAttribute: System.Attribute

 {
 private string developerName;
 private string dateCreated;

 // Constructor. Developer name is the only
 // mandatory parameter for this attribute.
 public DeveloperInfoAttribute(string developerName)
 {
 this.developerName = developerName;
 }
 public string Developer
 {
 get
 {
 return developerName;
 }
 }

 // Optional parameter
 public string Date
 {
 get
 {
 return dateCreated;
 }
 set
 {
 dateCreated = value;
 }
 }
 }
}

 Module 14: Attributes 31

å To add a custom attribute to a class

1. You will now use the DeveloperInfo attribute to record the name of the
developer of the Rational number class. (This class was c reated in an earlier
lab, but it is provided here for your convenience.) Open the Rational.sln
project in the install folder\Labs\Lab14\Starter \Rational folder.

2. Perform the following steps to add a reference to the CustomAttribute
library that you created earlier:

a. In Solution Explorer, expand the Rational tree.

b. Right-click References, and then click Add Reference .

c. In the Add Reference dialog box, click Browse.

d. Navigate to the install folder\Labs\Lab14\Starter \
CustomAttribute\Bin\Debug folder, and click CustomAttribute.dll.

e. Click Open, and then click OK.

3. Add a CustomAttribute.DeveloperInfo attribute to the Rational class,
specifying your name as the developer and the current date as the optional
date parameter, as follows:

[CustomAttribute.DeveloperInfo("Your Name", ÊDate="Today")]

4. Add a second developer to the Rational class.

5. Compile the Rational project and correct any errors.

6. Open a Command window and navigate to the install folder\
Labs\Lab14\Starter\Rational\Bin\Debug folder.

This folder should contain your Rational.exe executable.
7. Run ILDASM and open Rational.exe.

8. Expand the Rational namespace in the tree view.

9. Expand the Rational class.

10. Near the top of the class, notice your custom attribute and the values that
you supplied.

11. Close ILDASM.

32 Module 14: Attributes

å To use reflection to query attribute values

Using ILDASM is only one way to examine attribute values. You can also
use reflection in C# programs. Return to Visual Studio, and edit the
TestRational class in the Rational project.

1. In the Main method, create a variable called attrInfo of type
System.Reflection.MemberInfo, as shown in the following code:

public static void Main()
{
 System.Reflection.MemberInfo attrInfo;
...

2. You can use a MemberInfo object to hold information about the members
of a class. Assign the Rational type to the MemberInfo object by using the
typeof operator, as follows:

 attrInfo = typeof(Rational);

3. The attributes of a class are held as part of the class information. You can
retrieve the attribute values by using the GetCustomAttributes method.
Create an object array called attrs, and use the GetCustomAttributes
method of attrInfo to find all of the custom attributes used by the Rational
class, as shown in the following code:

 object[] attrs = attrInfo.GetCustomAttributes();

4. Now you need to extract the attribute information that is stored in the attrs
array and print it. Create a variable called developerAttr of type
CustomAttribute.DeveloperInfo, and assign it the first element in the attrs
array, casting as appropriate, as shown in the following code:

 CustomAttribute.DeveloperInfoAttribute developerAttr;
 developerAttr =
 Ê(CustomAttribute.DeveloperInfoAttribute)attrs[0];

In production code, you would use reflection rather than a cast to
determine the type of the attribute.

5. Use the get methods of the DeveloperInfoAttribute attribute to retrieve the
Developer and Date attributes and print them out as follows:

 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdeveloperAttr.Developer, developerAttr.Date);

6. Repeat steps 4 and 5 for element 1 of the attrs array.

You can use a loop if you want to be able to retrieve the values of more than
two attributes.

Note

 Module 14: Attributes 33

7. Compile the project and correct any errors.

The completed code for the Main method is shown in the following code:

namespace Rational
{
using System;

// Test harness
public class TestRational
{
 public static void Main()
 {
 System.Reflection.MemberInfo attrInfo;
 attrInfo = typeof(Rational);
 object [] attrs = attrInfo.GetCustomAttributes();
 CustomAttribute.DeveloperInfoAttribute developerAttr;
 developerAttr =
 Ê(CustomAttribute.DeveloperInfoAttribute)attrs[0];
 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdeveloperAttr.Developer, developerAttr.Date);
 developerAttr =
 Ê(CustomAttribute.DeveloperInfoAttribute)attrs[1];
 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdeveloperAttr.Developer, developerAttr.Date);
 }
}
}

Here is an alternative Main that uses a foreach loop:

 public static void Main()
 {
 System.Reflection.MemberInfo attrInfo;
 attrInfo = typeof(Rational);
 object[] attrs = attrInfo.GetCustomAttributes();

 foreach (CustomAttribute.DeveloperInfoAttribute
 Ê devAttr in attrs)
 {
 Console.WriteLine("Developer: {0}\tDate: {1}",
 ÊdevAttr.Developer, devAttr.Date);
 }
 }

8. When you run this program, it will display the names and dates that you
supplied as DeveloperInfoAttribute information to the Rational class.

34 Module 14: Attributes

Review

n Overview of Attributes

n Defining Custom Attributes

n Retrieving Attribute Values

1. Can you tag individual objects by using attributes?

2. Where are attribute values stored?

3. What mechanism is used to determine the value of an attribute at run time?

 Module 14: Attributes 35

4. Define an attribute class called CodeTestAttributes that is applicable only
to classes. It should have no positional parameters and two named
parameters called Reviewed and HasTestSuite. These parameters should be
of type bool and should be implemented by using read/write properties.

5. Define a class called Widget, and use CodeTestAttributes from the
previous question to mark that Widget has been reviewed but has no test
suite.

6. Suppose that Widget from the previous question had a method called
LogBug. Could CodeTestAttributes be used to mark only this method?

THIS PAGE INTENTIONALLY LEFT BLANK

