

Contents

Overview 1

Using Methods 2
Using Parameters 16

Using Overloaded Methods 30

Lab 5: Creating and Using Methods 38

Review 50

Module 5: Methods and
Parameters

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, Windows NT, and Windows Media are
either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other
countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 5: Methods and Parameters 1

Overview

n Using Methods

n Using Parameters

n Using Overloaded Methods

In designing most applications, you divide the application into functional units.
This is a central principle of application design because small sections of code
are easier to understand, design, develop, and debug. Dividing the application
into functional units also allows you to reuse functional components throughout
the application.

In C#, you structure your application into classes that contain named blocks of
code; these are called methods. A method is a member of a class that performs
an action or computes a value.

After completing this module, you will be able to:

n Create static methods that accept parameters and return values.

n Pass parameters to methods in different ways.

n Declare and use overloaded methods.

2 Module 5: Methods and Parameters

u Using Methods

n Defining Methods

n Calling Methods

n Using the return Statement

n Using Local Variables

n Returning Values

In this section, you will learn how to use methods in C#. Methods are important
mechanisms for struc turing program code. You will learn how to create
methods and how to call them from within a single class and from one class to
another.

You will learn how to use local variables, as well as how to allocate and
destroy them.

You will also learn how to return a value from a method, and how to use
parameters to transfer data into and out of a method.

 Module 5: Methods and Parameters 3

Defining Methods

n Main Is a Method

l Use the same syntax for defining your own methods

using System;

class ExampleClass
{

static void ExampleMethod()
{

Console.WriteLine("Example method");
}
static void Main()
{

// ...
}

}

using System;

class ExampleClass
{

static void ExampleMethod()
{

Console.WriteLine("Example method");
}
static void Main()
{

// ...
}

}

A method is group of C# statements that have been brought together and given
a name. Most modern programming languages have a similar concept; you can
think of a method as being like a function, a subroutine, a procedure or a
subprogram.

Examples of Methods
The code on the slide contains three methods:

n The Main method

n The WriteLine method

n The ExampleMethod method

The Main method is the entry point of the application. The WriteLine method
is part of the Microsoft® .NET Framework. It can be called from within your
program. The WriteLine method is a static method of the class
System.Console. The ExampleMethod method belongs to ExampleClass.
This method calls the WriteLine method.

In C#, all methods belong to a class. This is unlike programming languages
such as C, C++, and Microsoft Visual Basic®, which allow global subroutines
and functions.

4 Module 5: Methods and Parameters

Creating Methods
When creating a method, you must specify the following:

n Name

You cannot give a method the same name as a variable, a constant, or any
other non-method item declared in the class. The method name can be any
allowable C# identifier, and it is case sensitive.

n Parameter list

The method name is followed by a parameter list for the method. This is
enclosed between parentheses. The parentheses must be supplied even if
there are no parameters, as is shown in the examples on the slide.

n Body of the method

Following the parentheses is the body of the method. You must enclose the
method body within braces ({ and }), even if there is only one statement.

Syntax for Defining Methods
To create a method, use the following syntax:

static void MethodName()
{
 method body
}

The following example shows how to create a method named ExampleMethod
in the ExampleClass class:

using System;
class ExampleClass
{
 static void ExampleMethod()
 {
 Console.WriteLine("Example method");
 }

 static void Main()
 {
 Console.WriteLine("Main method");
 }
}

Method names in C# are case-sensitive. Therefore, you can declare and
use methods with names that differ only in case. For example, you can declare
methods called print and PRINT in the same class. However, the Common
Language Runtime requires that method names within a class differ in ways
other than case alone, to ensure compatibility with languages in which method
names are case-insensitive. This is important if you want your application to
interact with applications written in languages other than C#.

Note

 Module 5: Methods and Parameters 5

Calling Methods

n After You Define a Method, You Can:

l Call a method from within the same class
Use method’s name followed by a parameter list in
parentheses

l Call a method that is in a different class
You must indicate to the compiler which class contains
the method to call
The called method must be declared with the public
keyword

l Use nested calls
Methods can call methods, which can call other
methods, and so on

After you define a method, you can call it from within the same class and from
other classes.

Calling Methods
To call a method, use the name of the method followed by a parameter list in
parentheses. The parentheses are required even if the method that you call has
no parameters, as shown in the following example.

MethodName();

There is no Call statement Parentheses are
required for all method calls.

Note to Visual Basic Developers

6 Module 5: Methods and Parameters

In the following example, the program begins at the start of the Main method
of ExampleClass. The first statement displays “The program is starting.” The
second statement in Main is the call to ExampleMethod. Control flow passes
to the first statement within ExampleMethod, and “Hello, world” appears. At
the end of the method, control passes to the statement immediately following
the method call, which is the statement that displays “The program is ending.”

using System;

class ExampleClass
{
 static void ExampleMethod()
 {
 Console.WriteLine("Hello, world");
 }

 static void Main()
 {
 Console.WriteLine("The program is starting");
 ExampleMethod();
 Console.WriteLine("The program is ending");
 }
}

Calling Methods from Other Classes
To allow methods in one class to call methods in another class, you must:

n Specify which class contains the method you want to call.

To specify which class contains the method, use the following syntax:

ClassName.MethodName();

n Declare the method that is called with the public keyword.

The following example shows how to call the method TestMethod, which is
defined in class A, from Main in class B:

using System;

class A
{
 public static void TestMethod()
 {
 Console.WriteLine("This is TestMethod in class A");
 }
}

class B
{
 static void Main()
 {
 A.TestMethod();
 }
}

 Module 5: Methods and Parameters 7

If, in the example above, the class name were removed, the compiler would
search for a method called TestMethod in class B. Since there is no method of
that name in that class, the compiler will display the following error: “The name
‘TestMethod’ does not exist in the class or namespace ‘B.’”

If you do not declare a method as public, it becomes private to the class by
default. For example, if you omit the public keyword from the definition of
TestMethod, the compiler will display the following error: “A.TestMethod() is
inaccessible due to its protection level.”

You can also use the private keyword to specify that the method can only be
called from inside the class. The following two lines of code have exactly the
same effect because methods are private by default:

private static void MyMethod();
static void MyMethod();

The public and private keywords shown above specify the accessibility of the
method. These keywords control whether a method can be called from outside
of the class in which it is defined.

Nesting Method Calls
You can also call methods from within methods. The following example shows
how to nest method calls:

using System;
class NestExample
{
 static void Method1()
 {
 Console.WriteLine("Method1")
 }
 static void Method2()
 {
 Method1();
 Console.WriteLine("Method2")
 Method1();
 }
 static void Main()
 {
 Method2();
 Method1();
 }
}

8 Module 5: Methods and Pa rameters

The output from this program is as follows:

Method1
Method2
Method1
Method1

You can call an unlimited number of methods by nesting. There is no
predefined limit to the nesting level. However, the run-time environment might
impose limits, usually because of the amount of RAM available to perform the
process. Each method call needs memory to store return addresses and other
information.

As a general rule, if you are running out of memory for nested method calls,
you probably have a class design problem.

 Module 5: Methods and Parameters 9

Using the return Statement

n Immediate Return

n Return with a Conditional Statement

static void ExampleMethod()
{

int numBeans;
//...

Console.WriteLine("Hello");
if (numBeans < 10)

return;
Console.WriteLine("World");

}

static void ExampleMethod()
{

int numBeans;
//...

Console.WriteLine("Hello");
if (numBeans < 10)

return;
Console.WriteLine("World");

}

You can use the return statement to make a method return immediately to the
caller. Without a return statement, execution usually returns to the caller when
the last statement in the method is reached.

Immediate Return
By default, a method returns to its caller when the end of the last statement in
the code block is reached. If you want a method to return immediately to the
caller, use the return statement.

In the following example, the method will display “Hello,” and then
immediately return to its caller:

static void ExampleMethod()
{
 Console.WriteLine("Hello");
 return;
 Console.WriteLine("World");
}

Using the return statement like this is not very useful because the final call to
Console.WriteLine is never executed. If you have enabled the C# compiler
warnings at level 2 or higher, the compiler will display the following message:
“Unreachable code detected.”

10 Module 5: Methods and Parameters

Return with a Conditional Statement
It is more common, and much more useful, to use the return statement as part
of a conditional statement such as if or switch. This allows a method to return
to the caller if a given condition is met.

In the following example, the method will return if the variable numBeans is
less than 10; otherwise, execution will continue within this method.

static void ExampleMethod()
{
 int numBeans;
 //...
 Console.WriteLine("Hello");
 if (numBeans < 10)
 return;
 Console.WriteLine("World");
}

It is generally regarded as good programming style for a method to have
one entry point and one exit point. The design of C# ensures that all methods
begin execution at the first statement. A method with no return statements has
one exit point, at the end of the code block. A method with multiple return
statements has multiple exit points, which can make the method difficult to
understand and maintain in some cases.

Return with a Value
If a method is defined with a data type rather than void, the return mechanism is
used to assign a value to the function. This will be discussed later in this
module.

Tip

 Module 5: Methods and Parameters 11

Using Local Variables

n Local Variables

l Created when method begins

l Private to the method

l Destroyed on exit

n Shared Variables

l Class variables are used for sharing

n Scope Conflicts

l Compiler will not warn if local and class names clash

Each method has its own set of local variables. You can use these variables
only inside the method in which they are declared. Local variables are not
accessible from elsewhere in the application.

Local Variables
You can include local variables in the body of a method, as shown in the
following example:

static void MethodWithLocals()
{
 int x = 1; // Variable with initial value
 ulong y;
 string z;
}

You can assign local variables an initial value. (For an example, see variable x
in the preceding code.) If you do not assign a value or provide an initial
expression to determine a value, the variable will not be initialized.

The variables that are declared in one method are completely separate from
variables that are declared in other methods, even if they have the same names.

Memory for local variables is allocated each time the method is called and
released when the method terminates. Therefore, any values stored in these
variables will not be retained from one method call to the next.

12 Module 5: Methods and Parameters

Shared Variables
Consider the following code, which attempts to count the number of times a
method has been called:

class CallCounter_Bad
{
 static void Init()
 {
 int nCount = 0;
 }
 static void CountCalls()
 {
 int nCount;
 ++nCount;
 Console.WriteLine("Method called {0} time(s)", nCount);
 }
 static void Main()
 {
 Init();
 CountCalls();
 CountCalls();
 }
}

This program cannot be compiled because of two important problems. The
variable nCount in Init is not the same as the variable nCount in CountCalls.
No matter how many times you call the method CountCalls, the value nCount
is lost each time CountCalls finishes.

The correct way to write this code is to use a class variable, as shown in the
following example:

class CallCounter_Good
{
 static int nCount;
 static void Init()
 {
 nCount = 0;
 }
 static void CountCalls()
 {
 ++nCount;
 Console.Write("Method called " + nCount + " time(s).");
 }
 static void Main()
 {
 Init();
 CountCalls();
 CountCalls();
 }
}

In this example, nCount is declared at the class level rather than at the method
level. Therefore, nCount is shared between all of the methods in the class.

 Module 5: Methods and Parameters 13

Scope Conflicts
In C#, you can declare a local variable that has the same name as a class
variable, but this can produce unexpected results. In the following example,
NumItems is declared as a variable of class ScopeDemo, and also declared as a
local variable in Method1. The two variables are completely different. In
Method1, numItems refers to the local variable. In Method2, numItems refers
to the class variable.

class ScopeDemo
{
 static int numItems = 0;
 static void Method1()
 {
 int numItems = 42;
 }
 static void Method2()
 {
 numItems = 61;
 }
}

Because the C# compiler will not warn you when local variables and class
variables have the same names, you can use a naming convention to distinguish
local variables from class variables.

Tip

14 Module 5: Methods and Parameters

Returning Values

n Declare the Method with Non-Void Type

n Add a return Statement with an Expression

l Sets the return value

l Returns to caller

n Non-void Methods Must Return a Value

static int TwoPlusTwo() {
int a,b;
a = 2;
b = 2;
return a + b;

}

static int TwoPlusTwo() {
int a,b;
a = 2;
b = 2;
return a + b;

}

int x;
x = TwoPlusTwo();
Console.WriteLine(x);

int x;
x = TwoPlusTwo();
Console.WriteLine(x);

You have learned how to use the return statement to immediately terminate a
method. You can also use the return statement to return a value from a method.
To return a value, you must:

1. Declare the method with the value type that you want to return.

2. Add a return statement inside the method.

3. Include the value that you want to return to the caller.

Declaring Methods with Non-Void Type
To declare a method so that it will return a value to the caller, replace the void
keyword with the type of the value that you want to return.

Adding return Statements
The return keyword followed by an expression terminates the method
immediately and returns the expression as the return value of the method.

 Module 5: Methods and Parameters 15

The following example shows how to declare a method named TwoPlusTwo
that will return a value of 4 to Main when TwoPlusTwo is called:

class ExampleReturningValue
{
 static int TwoPlusTwo()
 {
 int a,b;
 a = 2;
 b = 2;
 return a + b;
 }

 static void Main()
 {
 int x;
 x = TwoPlusTwo();
 Console.WriteLine(x);
 }
}

Note that the returned value is an int. This is because int is the return type of
the method. When the method is called, the value 4 is returned. In this example,
the value is stored in the local variable x in Main.

Non-Void Methods Must Return Values
If you declare a method with a non-void type, you must add at least one return
statement. The compiler attempts to check that each non-void method returns a
value to the calling method in all circumstances. If the compiler detects that a
non-void method has no return statement, it will display the following error
message: “Not all code paths return a value.” You will also see this error
message if the compiler detects that it is possible to execute a non-void method
without returning a value.

In the following example, you will get a valid return statement if the value in x
is less than two. If the value in x is greater than or equal to two, the compiler
will report an error because the return statement is not executed, and the
method execution will terminate after the if statement without returning a value.

static int BadReturn()
{
 // ...
 if (x < 2)
 return 5;
}

You can only use the return statement to return one value from each
method call. If you need to return more than one value from a method call, you
can use the ref or out parameters, which are discussed later in this module.
Alternatively, you can return a reference to an array or class, which can contain
multiple values. The general guideline that says to avoid using multiple return
statements in a single method applies equally to non-void methods.

Tip

16 Module 5: Methods and Parameters

u Using Parameters

n Declaring and Calling Parameters

n Mechanisms for Passing Parameters

n Pass by Value

n Pass by Reference

n Output Parameters

n Using Variable-Length Parameter Lists

n Guidelines for Passing Parameters

n Using Recursive Methods

In this section, you will learn how to declare parameters and how to call
methods with parameters. You will also learn how to pass parameters. Finally,
you will learn how C# supports recursive method calls.

In this section you will learn how to:

n Declare and call parameters.

n Pass parameters by using the following mechanisms:

• Pass by value

• Pass by reference

• Output parameters

n Use recursive method calls.

 Module 5: Methods and Parameters 17

Declaring and Calling Parameters

n Declaring Parameters

l Place between parentheses after method name

l Define type and name for each parameter

n Calling Methods with Parameters

l Supply a value for each parameter

static void MethodWithParameters(int n, string y)
{ ... }

MethodWithParameters(2, "Hello, world");

static void MethodWithParameters(int n, string y)
{ ... }

MethodWithParameters(2, "Hello, world");

Parameters allow information to be passed into and out of a method. When you
define a method, you can include a list of parameters in parentheses following
the method name. In the examples so far in this module, the parameter lists
have been empty.

Declaring Parameters
Each parameter has a type and a name. You declare parameters by placing the
parameter declarations inside the parentheses that follow the name of the
method. The syntax that is used to declare parameters is similar to the syntax
that is used to declare local variables, except that you separate each parameter
declaration with a comma instead of with a semicolon.

The following example shows how to declare a method with parameters:

static void MethodWithParameters(int n, string y)
{
 // ...
}

This example declares the MethodWithParameters method with two
parameters: n and y. The first parameter is of type int, and the second is of type
string. Note that commas separate each parameter in the parameter list.

18 Module 5: Methods and Parameters

Calling Methods with Parameters
The calling code must supply the parameter values when the method is called.

The following code shows two examples of how to call a method with
parameters. In each case, the values of the parameters are found and placed into
the parameters n and y at the start of the execution of MethodWithParameters.

MethodWithParameters(2, "Hello, world");

int p = 7;
string s = "Test message";

MethodWithParameters(p, s);

 Module 5: Methods and Parameters 19

Mechanisms for Passing Parameters

n Three Ways to Pass Parameters:

inin Pass by valuePass by value

in
out
in
out Pass by referencePass by reference

outout Output parametersOutput parameters

Parameters can be passed in three different ways:

n By value

Value parameters are sometimes called in parameters because data can be
transferred into the method but cannot be transferred out.

n By reference

Reference parameters are sometimes called in/out parameters because data
can be transfer red into the method and out again.

n By output

Output parameters are sometimes called out parameters because data can be
transferred out of the method but cannot be transferred in.

20 Module 5: Methods and Parameters

Pass by Value

n Default Mechanism For Passing Parameters:

l Parameter value is copied

l Variable can be changed inside the method

l Has no effect on value outside the method

l Parameter must be of the same type or compatible type

static void AddOne(int x)
{

x++; // Increment x
}
static void Main()
{

int k = 6;
AddOne(k);
Console.WriteLine(k); // Display the value 6, not 7

}

static void AddOne(int x)
{

x++; // Increment x
}
static void Main()
{

int k = 6;
AddOne(k);
Console.WriteLine(k); // Display the value 6, not 7

}

In most applications, most parameters are used for passing information into a
method but not out. Therefore, pass by value is the default mechanism for
passing parameters in C#.

Defining Value Parameters
The simplest definition of a parameter is a type name followed by a variable
name. This is known as a value parameter. When the method is called, a new
storage location is created for each value parameter, and the values of the
corresponding expressions are copied into them.

The expression supplied for each value parameter must be the same type as the
declaration of the value parameter, or a type that can be implicitly converted to
that type. Within the method, you can write code that changes the value of the
parameter. It will have no effect on any variables outside the method call.

In the following example, the variable x inside AddOne is completely separate
from the variable k in Main. The variable x can be changed in AddOne, but
this has no effect on k.

static void AddOne(int x)
{
 x++;
}
static void Main()
{
 int k = 6;
 AddOne(k);
 Console.WriteLine(k); // Display the value 6, not 7
}

 Module 5: Methods and Parameters 21

Pass by Reference

n What Are Reference Parameters?

l A reference to memory location

n Using Reference Parameters

l Use the ref keyword in method declaration and call

l Match types and variable values

l Changes made in the method affect the caller

l Assign parameter value before calling the method

What Are Reference Parameters?
A reference parameter is a reference to a memory location. Unlike a value
parameter, a reference parameter does not create a new storage location. Instead,
a reference parameter represents the same location in memory as the variable
that is supplied in the method call.

Declaring Reference Parameters
You can declare a reference parameter by using the ref keyword before the type
name, as shown in the following example:

static void ShowReference(ref int nVar, ref long nCount)
{
 // ...
}

Using Multiple Parameter Types
The ref keyword only applies to the parameter following it, not to the whole
parameter list. Consider the following method, in which refVar is passed by
reference but longVar is passed by value:

static void OneRefOneVal(ref int refVar, long longVar)
{
 // ...
}

22 Module 5: Methods and Parameters

Matching Parameter Types and Values
When calling the method, you supply reference parameters by using the ref
keyword followed by a variable. The value supplied in the call to the method
must exactly match the type in the method definition, and it must be a variable,
not a constant or calculated expression.

int x;
long q;
ShowReference(ref x, ref q);

If you omit the ref keyword, or if you supply a constant or calculated
expression, the compiler will reject the call, and you will receive an error
message similar to the following: “Cannot convert from ‘int’ to ‘ref int.’”

Changing Reference Parameter Values
If you change the value of a reference parameter, the variable supplied by the
caller is also changed, because they are both references to the same location in
memory. The following example shows how changing the reference parameter
also changes the variable:

static void AddOne(ref int x)
{
 x++;
}
static void Main()
{
 int k = 6;
 AddOne(ref k);
 Console.WriteLine(k); // Display the value 7
}

This works because when AddOne is called, its parameter x is set up to refer to
the same memory location as the variable k in Main. Therefore, incrementing x
will increment k.

 Module 5: Methods and Parameters 23

Assigning Parameters Before Calling the Method
A ref parameter must be definitively assigned at the point of call; that is, the
compiler must ensure that a value is assigned before the call is made. The
following example shows how you can initialize reference parameters before
calling the method:

static void AddOne(ref int x)
{
 x++;
}

static void Main()
{
 int k = 6;
 AddOne(ref k);
 Console.WriteLine(k); // 7
}

The following example shows what happens if a reference parameter k is not
initialized before its method AddOne is called:

int k;
AddOne(ref k);
Console.WriteLine(k);

The C# compiler will reject this code and display the following error message:
“Use of unassigned local variable ‘k.’”

24 Module 5: Methods and Parameters

Output Parameters

n What Are Output Parameters?

l Values are passed out but not in

n Using Output Parameters

l Like ref, but values are not passed into the method

l Use out keyword in method declaration and call

static void OutDemo(out int p)
{

// ...
}
int n;
OutDemo(out n);

static void OutDemo(out int p)
{

// ...
}
int n;
OutDemo(out n);

What Are Output Parameters?
Output parameters are like reference parameters, except that they transfer data
out of the method rather than into it. They are similar to reference parameters.
Like a reference parameter, an output parameter is a reference to a storage
location supplied by the caller. However, the variable that is supplied for the
out parameter does not need to be assigned a value before the call is made, and
the method will assume that the parameter has not been initialized on entry.

Output parameters are useful when you want to be able to return values from a
method by means of a parameter without assigning an initial value to the
parameter.

 Module 5: Methods and Parameters 25

Using Output Parameters
To declare an output parameter, use the keyword out before the type and name,
as shown in the following example:

static void OutDemo(out int p)
{
 // ...
}

As with the ref keyword, the out keyword only affects one parameter, and each
out parameter must be marked separately.

When calling a method with an out parameter, place the out keyword before
the variable to be passed, as in the following example.

int n;
OutDemo(out n);

In the body of the method being called, no initial assumptions are made about
the contents of the output parameter. It is treated just like an unassigned local
variable.

26 Module 5: Methods and Parameters

Using Variable-Length Parameter Lists

n Use the params Keyword

n Declare As an Array at the End of the Parameter List

n Always Pass by Value

static long AddList(params long[] v)
{

long total, i;
for (i = 0, total = 0; i < v.Length; i++)

total += v[i];
return total;

}
static void Main()
{

long x = AddList(63,21,84);
}

static long AddList(params long[] v)
{

long total, i;
for (i = 0, total = 0; i < v.Length; i++)

total += v[i];
return total;

}
static void Main()
{

long x = AddList(63,21,84);
}

C# provides a mechanism for passing variable- length parameter lists.

Declaring Variable-Length Parameters
It is sometimes useful to have a method that can accept a varying number of
parameters. In C#, you can use the params keyword to specify a variable-
length parameter list. When you declare a variable - length parameter, you must:

n Declare only one params parameter per method.

n Place the parameter at the end of the parameter list.

n Declare the parameter as a single-dimension array type.

The following example shows how to declare a variable-length parameter list:

static long AddList(params long[] v)
{
 long total;
 long i;
 for (i = 0, total = 0; i < v. Length; i++)
 total += v[i];
 return total;
}

Because a params parameter is always an array, all values must be the same
type.

 Module 5: Methods and Parameters 27

Passing Values
When you call a method with a variable-length parameter, you can pass values
to the params parameter in one of two ways:

n As a list of elements (the list can be empty)

n As an array

The following code shows both techniques. The two techniques are treated in
exactly the same way by the compiler.

static void Main()
{
 long x;
 x = AddList(63,21,84); // List
 x = AddList(new long[]{ 63, 21, 84 }); // Array
}

Regardless of which method you use to call the method, the params parameter
is treated like an array. You can use the Length property of the array to
determine how many parameters were passed to each call.

In a params parameter, a copy of the data is made, and although you can
modify the values inside the method, the values outside the method are
unchanged.

28 Module 5: Methods and Parameters

Guidelines for Passing Parameters

n Mechanisms

l Pass by value is most common

l Method return value is useful for single values

l Use ref and/or out for multiple return values

l Only use ref if data is transferred both ways

n Efficiency

l Pass by value is generally the most efficient

With so many options available for parameter passing, the most appropriate
choice might not be obvious. Two factors for you to consider when you choose
a way to pass parameters are the mechanism and its efficiency.

Mechanisms
Value parameters offer a limited form of protection against unintended
modification of parameter values, because any changes that are made inside the
method have no effect outside it. This suggests that you should use value
parameters unless you need to pass information out of a method.

If you need to pass data out of a method, you can use the return statement,
reference parameters, or output parameters. The return statement is easy to use,
but it can only return one result. If you need multiple values returned, you must
use the reference and output parameter types. Use ref if you need to transfer
data in both directions, and use out if you only need to transfer data out of the
method.

Efficiency
Generally, simple types such as int and long are most efficiently passed by
value.

These efficiency concerns are not built into the language, and you should not
rely on them. Although efficiency is sometimes a consideration in large,
resource-intensive applications, it is usually better to consider program
correctness, stability, and robustness before efficiency. Make good
programming practices a higher priority than efficiency.

 Module 5: Methods and Parameters 29

Using Recursive Methods

n A Method Can Call Itself

l Directly

l Indirectly

n Useful for Solving Certain Problems

n Example

A method can call itself. This technique is known as recursion. You can
address some types of problems with recursive solutions. Recursive methods
are often useful when manipulating more complex data structures such as lists
and trees.

Methods in C# can be mutually recursive. For example, a situation in which
method A can call method B, and method B can call method A, is allowable.

Example of a Recursive Method
The Fibonacci sequence occurs in several situations in mathematics and biology
(for example, the reproductive rate and population of rabbits). The nth member
of this sequence has the value 1 if n is 1 or 2; otherwise, it is equal to the sum of
the preceding two numbers in the sequence. Notice that when n is greater than
two the value of the nth member of the sequence is derived from the values of
two previous values of the sequence. When the definition of a method refers to
the method itself, recursion might be involved.

You can implement the Fibonacci method as follows:

static ulong Fibonacci(ulong n)
{
 if (n <= 2)
 return 1;
 else
 return Fibonacci(n-1) + Fibonacci(n-2);
}

Notice that two calls are made to the method from within the method itself.

A recursive method must have a terminating condition that ensures that it will
return without making further calls. In the case of the Fibonacci method, the
test for n <= 2 is the terminating condition.

30 Module 5: Methods and Parameters

u Using Overloaded Methods

n Declaring Overloaded Methods

n Method Signatures

n Using Overloaded Methods

Methods might not have the same name as other non-method items in a class.
However, it is possible for two or more methods in a class to share the same
name. Name sharing among methods is called overloading.

In this section, you will learn:

n How to declare overloaded methods.

n How C# uses signatures to distinguish methods that have the same name.

n When to use overloaded methods.

 Module 5: Methods and Parameters 31

Declaring Overloaded Methods

n Methods That Share a Name in a Class

l Distinguished by examining parameter lists

class OverloadingExample
{

static int Add(int a, int b)
{

return a + b;
}
static int Add(int a, int b, int c)
{

return a + b + c;
}
static void Main()
{

Console.WriteLine(Add(1,2) + Add(1,2,3));
}

}

class OverloadingExample
{

static int Add(int a, int b)
{

return a + b;
}
static int Add(int a, int b, int c)
{

return a + b + c;
}
static void Main()
{

Console.WriteLine(Add(1,2) + Add(1,2,3));
}

}

Overloaded methods are methods in a single class that have the same name. The
C# compiler distinguishes overloaded methods by comparing the parameter
lists.

Examples of Overloaded Methods
The following code shows how you can use different methods with the same
name in one class:

class OverloadingExample
{
 static int Add(int a, int b)
 {
 return a + b;
 }
 static int Add(int a, int b, int c)
 {
 return a + b + c;
 }
 static void Main()
 {
 Console.WriteLine(Add(1,2) + Add(3,4,5));
 }
}

32 Module 5: Methods and Parameters

The C# compiler finds two methods called Add in the class, and two method
calls to methods called Add within Main. Although the method names are the
same, the compiler can distinguish between the two Add methods by
comparing the parameter lists.

The first Add method takes two parameters, both of type int. The second Add
method takes three parameters, also of type int. Because the parameter lists are
different, the compiler allows both methods to be defined within the same class.

The first statement within Main includes a call to Add with two int parameters,
so the compiler translates this as a call to the first Add method. The second call
to Add takes three int parameters, so the compiler translates this as a call to the
second Add method.

You cannot share names among methods and variables, constants, or
enumerated types in the same class. The following code will not compile
because the name k has been used for both a method and a class variable:

class BadMethodNames
{
 static int k;
 static void k() {
 // ...
 }
}

 Module 5: Methods and Parameters 33

Method Signatures

n Method Signatures Must Be Unique Within a Class

n Signature Definition

n Name of method

n Parameter type

n Parameter modifier

n Name of method

n Parameter type

n Parameter modifier

Forms Signature
Definition

Forms SignatureForms Signature
DefinitionDefinition

n Name of parameter

n Return type of method

n Name of parameter

n Return type of method

No Effect on
Signature

No Effect onNo Effect on
SignatureSignature

The C# compiler uses signatures to distinguish between methods in a class. In
each class, the signature of each method must differ from the signatures of all
other methods that are declared in that class.

Signature Definition
The signature of a method consists of the name of the method, the number of
parameters that the method takes, and the type and modifier (such as out or ref)
of each parameter.

The following three methods have different signatures, so they can be declared
in the same class.

static int LastErrorCode()
{

}
static int LastErrorCode(int n)
{

}

static int LastErrorCode(int n, int p)
{

}

34 Module 5: Methods and Parameters

Elements That Do Not Affect the Signature
The method signature does not include the return type. The following two
methods have the same signatures, so they cannot be declared in the same class.

static int LastErrorCode(int n)
{
}
static string LastErrorCode(int n)
{
}

The method signature does not include the names of the parameters. The
following two methods have the same signature, even though the parameter
names are different.

static int LastErrorCode(int n)
{
}
static int LastErrorCode(int x)
{
}

 Module 5: Methods and Parameters 35

Using Overloaded Methods

n Consider Using Overloaded Methods When:

l You have similar methods that require different
parameters

l You want to add new functionality to existing code

n Do Not Overuse Because:

l Hard to debug

l Hard to maintain

Overloaded methods are useful when you have two similar methods that require
different numbers or types of parameters.

Similar Methods That Require Different Parameters
Imagine that you have a class containing a method that sends a greeting
message to the user. Sometimes the user name is known, and sometimes it is
not. You could define two different methods called Greet and GreetUser, as
shown in the following code:

class GreetDemo
{
 static void Greet()
 {
 Console.WriteLine("Hello");
 }
 static void GreetUser(string Name)
 {
 Console.WriteLine("Hello" + Name);
 }
 static void Main()
 {
 Greet();
 GreetUser("Alex");
 }
}

36 Module 5: Methods and Parameters

This will work, but now the class has two methods that perform almost exactly
the same task but that have different names. You can rewrite this class with
method overloading as shown in the following code:

class GreetDemo
{
 static void Greet()
 {
 Console.WriteLine("Hello");
 }
 static void Greet(string Name)
 {
 Console.WriteLine("Hello" + Name);
 }
 static void Main()
 {
 Greet();
 Greet("Alex");
 }
}

 Module 5: Methods and Parameters 37

Adding New Functionality to Existing Code
Method overloading is also useful when you want to add new features to an
existing application without making extensive changes to existing code. For
example, the previous code could be expanded by adding another method that
greets a user with a particular greeting, depending on the time of day, as shown
in the following code:

class GreetDemo
{
 enum TimeOfDay { Morning, Afternoon, Evening }

 static void Greet()
 {
 Console.WriteLine("Hello");
 }
 static void Greet(string Name)
 {
 Console.WriteLine("Hello" + Name);
 }
 static void Greet(string Name, TimeOfDay td)
 {
 string Message;

 switch(td)
 {
 case TimeOfDay.Morning:
 Message="Good morning";
 break;
 case TimeOfDay.Afternoon:
 Message="Good afternoon";
 break;
 case TimeOfDay.Evening:
 Message="Good evening";
 break;
 }
 Console.WriteLine(Message + " " + Name);
 }
 static void Main()
 {
 Greet();
 Greet("Alex");
 Greet("Sandra", TimeOfDay.Morning);
 }
}

Determining When to Use Overloading
Overuse of method overloading can make classes hard to maintain and debug.
In general, only overload methods that have very closely related functions but
differ in the amount or type of data that they need.

38 Module 5: Methods and Parameters

Lab 5: Creating and Using Methods

Objectives
After completing this lab, you will be able to:

n Create and call methods with and without parameters.

n Use various mechanisms for passing parameters.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating and using variables

n C# statements

Estimated time to complete this lab: 30 minutes

 Module 5: Methods and Parameters 39

Exercise 1
Using Parameters in Methods That Return Values

In this exercise, you will define and use input parameters in a method that
returns a value. You will also write a test framework to read two values from
the console and display the results.

You will create a class called Utils. In this class, you will create a method
called Greater. This method will take two integer parameters as input and will
return the value of the greater of the two.

To test the class, you will create another class called Test that prompts the user
for two numbers, then calls Utils.Greater to determine which number is the
greater of the two, and then prints the result.

å To create the Greater method

1. Open the Utils.sln project in the install folder\Labs\Lab05\Starter\Utility
folder.

This contains a namespace called Utils that contains a class also called Utils.
You will write the Greater method in this class.

2. Create the Greater method as follows:

a. Open the Utils class.

b. Add a public static method called Greater to the Utils class.

c. The method will take two int parameters, called a and b, which will be
passed by value. The method will return an int value representing the
greater of the two numbers.

40 Module 5: Methods and Parameters

The code for the Utils class should be as follows:

namespace Utils
{
 using System;

 class Utils
 {

 //
 // Return the greater of two integer values
 //

 public static int Greater(int a, int b)
 {
 if (a > b)
 return a;
 else
 return b;
 }
 }
}

å To test the Greater method

1. Open the Test class.

2. Within the Main method, write the following code.

a. Define two integer variables called x and y.

b. Add statements that read two integers from keyboard input and use them
to populate x and y. Use the Console.ReadLine and int.Parse methods
that were presented in earlier modules.

c. Define another integer called greater.

d. Test the Greater method by calling it, and assign the returned value to
the variable greater.

3. Write code to display the greater of the two integers by using
Console.WriteLine .

 Module 5: Methods and Parameters 41

The code for the Test class should be as follows:

namespace Utils
{
 using System;

 /// <summary>
 /// This the test harness
 /// </summary>

 public class Test
 {
 public static void Main()
 {
 int x; // Input value 1
 int y; // Input value 2
 int greater; // Result from Greater()

 // Get input numbers
 Console.WriteLine("Enter first number:");
 x = int.Parse(Console.ReadLine());
 Console.WriteLine("Enter second number:");
 y = int.Parse(Console.ReadLine());

 // Test the Greater() method
 greater = Utils.Greater(x,y);
 Console.WriteLine("The greater value is "+
Ê greater);

 }
 }
}

4. Save your work.

5. Compile the project and correct any errors. Run and test the program.

42 Module 5: Methods and Parameters

Exercise 2
Using Methods with Reference Parameters

In this exercise, you will write a method called Swap that will exchange the
values of its parameters. You will use parameters that are passed by reference.

å To create the Swap method

1. Open the Utils.sln project in the install folder\Labs\Lab05\Starter\Utility
folder, if it is not already open.

2. Add the Swap method to the Utils class as follows:

a. Add a public static void method called Swap.

b. Swap will take two int parameters called a and b, which will be passed
by reference.

c. Write statements inside the body of Swap that exchange the values of a
and b. You will need to create a local int variable in Swap to
temporarily hold one of the values during the exchange. Name this
variable temp.

The code for the Utils class should be as follows:

namespace Utils
{
 using System;

 public class Utils
 {

 ... existing code omitted for clarity ...

 //
 // Exchange two integers, passed by reference
 //

 public static void Swap(ref int a, ref int b)
 {
 int temp = a;
 a = b;
 b = temp;
 }

 }
}

 Module 5: Methods and Parameters 43

å To test the Swap method

1. Edit the Main method in the Test class by performing the following steps:

a. Populate integer variables x and y.

b. Call the Swap method, passing these values as parameters.

Display the new values of the two integers before and after exchanging
them. The code for the Test class should be as follows:

namespace Utils
{
 using System;

 public class Test
 {

 public static void Main()
 {
 ... existing code omitted for clarity ...

 // Test the Swap method
 Console.WriteLine("Before swap: " + x + "," + y);
 Utils.Swap(ref x,ref y);
 Console.WriteLine("After swap: " + x + "," + y);

 }

 }
}

2. Save your work.

3. Compile the project, correcting any errors you find. Run and test the
program.

If the parameters were not exchanged as you expected, check to ensure
that you passed them as ref parameters.

Tip

44 Module 5: Methods and Parameters

Exercise 3
Using Methods with Output Parameters

In this exercise, you will define and use a static method with an output
parameter.

You will write a new method called Factorial that takes an int value and
calculates its factorial. The factorial of a number is the product of all the
numbers between 1 and that number. The factorial of zero is defined to be 1.
The following are examples of factorials:

n Factorial(0) = 1

n Factorial(1) = 1

n Factorial(2) = 1 * 2 = 2

n Factorial(3) = 1 * 2 * 3 = 6

n Factorial(4) = 1 * 2 * 3 * 4 = 24

å To create the Factorial method

1. Open the Utils.sln project in the install folder\Labs\Lab05\Starter\Utility
folder, if it is not already open.

2. Add the Factorial method to the Utils class, as follows:

a. Add a new public static method called Factorial.

b. This method will take two parameters called n and answer. The first,
passed by value, is an int value for which the factorial is to be calculated.
The second parameter is an out int parameter that will be used to return
the result.

c. The Factorial method should return a bool value that indicates whether
the method succeeded. (It could overflow and raise an exception.)

3. Add functionality to the Factorial method.

The easiest way to calculate a factorial is by using a loop. Perform the
following steps to add functionality to the method:

a. Create an int variable called k in the Factorial method. This will be
used as a loop counter.

b. Create another int variable called f , which will be used as a working
value inside the loop. Initialize the working variable f with the value 1.

c. Use a for loop to perform the iteration. Start with a value of 2 for k, and
finish when k reaches the value of parameter n. Increment k each time
the loop is performed.

d. In the body of the loop, multiply f successively by each value of k,
storing the result in f.

e. Factorial results can be very large even for small input values, so ensure
that all the integer calculations are in a checked block, and that you have
caught exceptions such as arithmetic overflow.

f. Assign the result value in f to the out parameter answer.

g. Return true from the method if the calculation is successful, and false if
the calculation is not successful (that is, if an exception occurs).

 Module 5: Methods and Parameters 45

The code for the Utils class should be as follows:

namespace Utils
{
 using System;

 public class Utils
 {

 ... existing code omitted for clarity ...

 //
 // Calculate factorial
 // and return the result as an out parameter
 //

 public static bool Factorial(int n, out int answer)
 {
 int k; // Loop counter
 int f; // Working value
 bool ok=true; // True if okay, false if not

 // Check the input value

 if (n<0)
 ok = false;

 // Calculate the factorial value as the
 // product of all of the numbers from 2 to n

 try
 {
 checked
 {
 f = 1;
 for (k=2; k<=n; ++k)
 {
 f = f * k;
 }
 }
 }
 catch(Exception)
 {
 // If something goes wrong in the calculation,
 // catch it here. All exceptions
 // are handled the same way: set the result
 // to zero and return false.

 (Code continued on following page.)

46 Module 5: Methods and Parameters

 f = 0;
 ok = false;
 }

 // Assign result value
 answer = f;
 // Return to caller
 return ok;
 }

 }
}

 Module 5: Methods and Parameters 47

å To test the Factorial method

1. Edit the Test class as follows:

a. Declare a bool variable called ok to hold the true or false result.

b. Declare an int variable called f to hold the factorial result.

c. Request an integer from the user. Assign the input value to the int
variable x.

d. Call the Factorial method, passing x as the first parameter and f as the
second parameter. Return the result in ok.

e. If ok is true , display the values of x and f ; otherwise, display a message
indicating that an error has occurred.

The code for the Test class should be as follows:

namespace Utils
{
 public class Test
 {

 static void Main()
 {
 int f; // Factorial result
 bool ok; // Factorial success or failure

 ... existing code omitted for clarity ...

 // Get input for factorial

 Console.WriteLine("Number for factorial:");
 x = int.Parse(Console.ReadLine());

 // Test the factorial function
 ok = Utils.Factorial(x, out f);
 // Output factorial results
 if (ok)
 Console.WriteLine("Factorial(" + x + ") = " +
f);
 else
 Console.WriteLine("Cannot compute this
Êfactorial");
 }
 }
}

2. Save your work.

3. Compile the program, correct any errors, and then run and test the program.

48 Module 5: Methods and Parameters

If Time Permits
Implementing a Method by Using Recursion

In this exercise, you will re-implement the Factorial method that you created in
Exercise 3 by using recursion rather than a loop.

The factorial of a number can be defined recursively as follows: the factorial of
zero is 1, and you can find the factorial of any larger integer by multiplying that
integer with the factorial of the previous number. In summary:

If n=0, then Factorial(n) = 1; otherwise it is n * Factorial(n-1)

å To modify the existing Factorial method

1. Edit the Utils class and modify the existing Factorial method so that it uses
recursion rather than iteration.

The parameters and return types will be the same, but the internal
functionality of the method will be different. If you want to keep your
existing solution to Exercise 3, you will need to use another name for this
method.

2. Use the pseudocode shown above to implement the body of the Factorial
method. (You will need to convert it into C# syntax.)

3. Add code to the Test class to test your new method.

4. Save your work.

5. Compile the program, correct any errors, and then run and test the program.

 Module 5: Methods and Parameters 49

The recursive version of the Factorial method (RecursiveFactorial) is
shown below:

 //
 // Another way to solve the factorial problem,
 // this time as a recursive function
 //

 public static bool RecursiveFactorial(int n, out int f)
 {
 bool ok=true;

 // Trap negative inputs
 if (n<0)
 {
 f=0;
 ok = false;
 }

 if (n<=1)
 f=1;
 else
 {
 try
 {
 int pf;
 checked
 {
 ok = RecursiveFactorial(n-1,out pf);
 f = n * pf;
 }
 }
 catch(Exception)
 {
 // Something went wrong. Set error
 // flag and return zero.
 f=0;
 ok=false;
 }

 }

 return ok;
 }

50 Module 5: Methods and Parameters

Review

n Using Methods

n Using Parameters

n Using Overloaded Methods

1. Explain what methods are and why they are important.

2. List the three ways in which data can be passed in parameters, and the
associated C# keywords.

3. When are local variables created and destroyed?

4. What keyword should be added to a method definition if the method needs
to be called from another class?

 Module 5: Methods and Parameters 51

5. What parts of a method are used to form the signature?

6. Define the signature of a static method called Rotate that does not return a
value but that must “right rotate” its three integer parameters.

THIS PAGE INTENTIONALLY LEFT BLANK

