msdn training

Module 8: Using
Reference-Type Variables

Contents

Overview 1
Using Reference -Type Variables 2
Using Common Reference Types 15
The Object Hierarchy 23
Namespaces in the .NET Framework 29
Lab 8.1: Defining And Using Reference -
Variables 35
Data Conversions 43
Multimedia: Type-Safe Casting 56
Lab 8.2 Converting Data 57
Review 63

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Microsoft

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.
Microsoft,ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual

Basic, Visual C++, Visual C#, Visua Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

Module 8: Using Reference-Type Variables 1

Overview

m Using Reference-Type Variables

= Using Common Reference Types

m The Object Hierarchy

m Namespaces in the .NET Framework

m Data Conversions

In this module, you will learn how to use reference typesin C#. You will learn
about a number of reference types, such as string, that are built into the C#
language and run-time environment. These are discussed as examples of
reference types.

You will also learn about the C# object hierarchy and the object typein
particular, so you can understand how the various reference types are related to
each other and to the value types. Y ou will learn how to convert data between
reference types by using explicit and implicit conversions. You will also learn
how boxing and unboxing conversions convert data between reference types
and value types.

After completing this module, you will be able to:

= Describe the important differences between reference types and value types.
= Use common reference types, such as string.

= Explain how the object type works and become familiar with the methods it
supplies.

m Describe common namespaces in the Microsofte .NET Framework.

= Determine whether different types and objects are compatible.

= Explicitly and implicitly convert data types between reference types.

= Perform boxing and unboxing conversions between reference and vaue data.

2 Module 8: Using Reference-Type Variables

€ Using Reference-Type Variables

= Comparing Value Types to Reference Types

m Declaring and Releasing Reference Variables
= Invalid References

m Comparing Values and Comparing References

m Multiple References to the Same Object

m Using References as Method Parameters

Reference types are important features of the C# language. They enable you to
write complex and powerful applications and ef fectively use the run-time
framework.

In this section, you will learn about reference-type variables and about how
they are different from value-type variables. You will learn how to use and
discard reference variables. You will also learn how to pass reference types as
method parameters.

Module 8: Using Reference-Type Variables 3

Comparing Value Types to Reference Types

= Value Types = Reference Types
e The variable o The variable contains a
contains the reference to the data
value directly e Datais storedin a
o Examples: separate memory area
char, int ,
string nol;
int nol - nmol = "Hello";

mol = 42; . |—> Hello I

C# supports basic data types such as int, long and bool. These types are aso

referred to as value types. C# a so supports more complex and powerful data
types known as reference types.

Value Types

Vaue-type variables are the basic built-in data types such as char and int. Vaue
types are the simplest types in C#. Variables of vaue type directly contain their
data in the variable.

Reference Types

Reference-type variables contain a reference to the data, not the dataitself. The
data itself is stored in a separate memory area.

You have aready used several reference typesin this course so far, perhaps
without realizing it. Arrays, strings, and exceptions are al reference types that
are built into the C# compiler and the .NET Framework. Classes, both built-in
and user-defined, are also a kind of reference type.

4

Module 8: Using Reference-Type Variables

Declaring and Releasing Reference Variables

m Declaring Reference Variables

coordi nate ci;

¢l = new coordinate(); .
cl. X 6.12; _I_> 612 42

cl.y 4. 2;

m Releasing Reference Variables

cl = null;

. HM 6.12| 4.2 I

To use reference-type variables, you need to know how to declare and initiaize
them and how to release them.

Declaring Reference Variables

Y ou declare reference-type variables by using the same syntax that you use
when declaring value-type variables:

coordinate cl;

The preceding example declares a variable c1 that can hold a reference to an
object of type coordinate. However, this variable is not initialized to reference
any coor dinate objects.

Toinitialize a coor dinate object, use the new operator. This creates a new
object and returns an object reference that can be stored in the reference
variable.

coordinate cl;
cl = new coordinate();

If you prefer, you can combine the new operator with the variable declaration
so that the variable is declared and initialized in one statement, as follows:

coordinate cl = new coordinate();

After you have created an object in memory to which cl refers, you can then

reference member variables of that object by using the dot operator as shown in
the following example:

cl.x
cl.y

6.12;
4.2;

Module 8: Using Reference-Type Variables 5

Example of Declaring Reference Variables

Classes are reference types. The following example shows how to declare a
user -defined class called coor dinate. For simplicity, this class has only two
public member variables: xandy.

class coordinate

{
public double x
public double y

o o
o O

}

This simple class will be used in later examples to demonstrate how reference
variables can be created, used, and destroyed.

Releasing Reference Variables

After you assign areference to a new object, the reference variable will
continue to reference the object until it is assigned to refer to a different object.

C# defines a specia value called null. A reference variable contains null when
it does not refer to any valid object. To release a reference, you can explicitly
assign the value null to areference variable (or ssimply alow the reference to go
out of scope).

6 Module 8: Using Reference-Type Variables

Invalid References

= If You Have Invalid References

e You cannot access members or variables
m Invalid References at Compile Time

e Compiler detects use of uninitialized references
m Invalid References at Run Time

e System will generate an exception error

You can only access the members of an object through a reference variable if

the reference variable has been initialized to point to avalid reference. If a
reference is not valid, you cannot access member variables or methods.

The compiler can detect this problem in some cases. In other cases, the problem
must be detected and handled at run time.

Invalid References at Compile Time

The compiler is able to detect situations in which a reference variable is not
initialized prior to use.

For example, if a coordinate variable is declared but not assigned, you will
receive an error message similar to the following: “ Use of unassigned local
variable c1.” The following code provides an example:

coordinate cl;
cl.x = 6.12; // Will fail: variable not assigned

Module 8: Using Reference-Type Variables 7

Invalid References at Run Time

In generdl, it is not possible to determine at compile time when a variable
referenceis not valid. Therefore, C# will check the value of areference variable
before it is used, to ensure that it is not null.

If you try to use a reference variable that has the value null, the run-time system
will throw a NullRefer enceException exception. If you want, you can check
for this condition by using try and catch. The following is an example:

try {
cl.x = 45;

}

catch (NullReferenceException) {
Console.WriteLine(''cl has a null value™);

}

Alternatively, you can check for null explicitly, thereby avoiding exceptions.
The following example shows how to check that a reference variable contains a
nor-null reference before trying to access its members

if (cl !'= null)
cl.x = 45;
else
Console.WriteLine(''cl has a null value'™);

8 Module 8: Using Reference-Type Variables

Comparing Values and Comparing References

= Comparing Value Types
e ==and != compare values
m Comparing Reference Types

e == and != compare the references, not the values

;'—» 1.0 | 20

Different

20 |

The equality (==) and inequality (!=) operators might not work in the way you
expect for reference variables.

Comparing Value Types

For value types, you can use the == and != operators to compare values.

Comparing Reference Types

For reference types, you can use the == and != operators to compare references.
When comparing references with the == operator, you are determining whether
the two reference variables are referring to the same object. You are not
comparing the contents of the objectsto which the variables refer.

Module 8: Using Reference-Type Variables 9

Consider the following example, in which two coordinate variables are created
and initialized to the same values:

coordinate cl= new coordinate();
coordinate c2= new coordinate();

cl.x = 1.0;

cl.y = 2.0;

c2.x = 1.0;

c2.y = 2.0;

if (cl == c2)
Console.WriteLine(''Same");

else

Console _WriteLine(''Different');

The output from this code is“ Different.” Even though the objects that c1 and c2
are referring to have the same values, they are references to different objects, so
== returns false.

Y ou cannot use the other relational operators (<, >, <=, and >=) for references
because they are not defined in C#.

10 Module 8: Using Reference-Type Variables

Multiple References to the Same Object

m Two References Can Refer to the Same Object

e Two ways to access the same object for read/write

coordi nate cl= new coordinate();
coordi nate c2;
cl.x =2.3; cl.y = 7.6;

c2 = cl;
Consol e. WiteLine(cl.x + " , " + cl.y);
Consol e. WiteLine(c2.x + " , " + c2.y);

Two reference variables can refer to the same object because reference

variables hold areference to the data. This means that you can write data
through one reference and read the same data through another reference.

Multiple References to the Same Object

In the following example, the variable cl is initialized to point to a new
instance of the class, and its member variables x and y are initialized. Then clis
copied to c2. Findly, the valuesin the objects that c1 and c2 reference are
displayed.

coordinate cl = new coordinate();
coordinate c2;

cl.x = 2.3;

cl.y = 7.6;

c2 = cl;

Console.WriteLine(cl.x + " , " + cl.y);
Console.WriteLine(c2.x + " , " + c2.y);

The output of this program is as follows:

2.3, 7.6
2.3, 7.6

Assigning c2 to ¢l copies the reference so that both variables are referencing
the same instance. Therefore, the values printed for the member variables of cl
and c2 are the same.

Module 8: Using Reference-Type Variables 11

Writing and Reading the Same Data Through Different
References

In the following example, an assignment has been added immediately before
the callsto Console WriteLine.

coordinate cl = new coordinate();
coordinate c2;

cl.x = 2.3;
cl.y = 7.6;
c2 = cl;

cl.x = 99; // This is the extra statement
Console_WriteLine(cl.x + ™ , " + cl.y);
Console.WriteLine(c2.x + " , " + c2.y);

The output of this program is as follows:

99 , 7.6
99 , 7.6

This shows that the assignment of 99 to c1.x has also changed c2.x Because the
reference in c1 was previously assigned to c2, a program can write data through
one reference and read the same data through another reference.

12

Module 8: Using Reference-Type Variables

Using References as Method Parameters

m References Can Be Used as Parameters

e When passed by reference, data being referenced may
be changed

static voi d PassCoor di nat eByVal ue(coor §i nate c)

{
}

C. X++; C.y++;

loc.x = 2; loc.y = 3;
PassCoor di nat eByVal ue(| oc);
Consol e.WiteLine(loc.x +" |, " + loc.y);

You can pass reference variables in and out of a method.

References and Methods

You can pass reference variables into methods as parameters by using any of
the three calling mechanisms:

= By vdue
= By reference
= Output parameters

The following example shows a method that passes three coordinate references.
Thefirst is passed by value, the second is passed by reference, and the third is
an output parameter. The return value of the method is a coordinate reference.

static coordinate Example(
coordinate ca,
ref coordinate cb,
out coordinate cc)

{
/7 ...

}

Module 8: Using Reference-Type Variables 13

Passing References by Value

When you use a reference variable as a value parameter, the method receives a
copy of the reference. This means that for the duration of the call there ae two
references referencing the same object. It also means that any changes to the
method parameter cannot affect the calling reference. For example, the
following code displays the values 0 , O:

static void PassCoordinateByValue(coordinate c)
{

c = new coordinate();

C.X = c.y = 22.22;
}
coordinate loc = new coordinate();
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , "™ + loc.y);

Passing References by Reference

When you use areference variable as a r ef parameter, the method receivesthe
actual reference variable. In contrast to passing by value, in this case thereis
only one reference. The method does not make its own copy. This means that
any changes to the method parameter will affect the calling reference. For
example, the following code displays the values 33.33 , 33.33:

static void PassCoordinateByRef(ref coordinate c)
{

c = new coordinate();

c.x = c.y = 33.33;
}
coordinate loc = new coordinate();
PassCoordinateByRef(ref loc);
Console._WriteLine(loc.x + "," + loc.y);

Passing References by Output

When you use a reference variable as an out parameter, the method receives the
actual reference variable. In contrast to passing by value, in this case there is
only one reference. The method does not make its own copy. Passing by out is
similar to passing by ref except that the method must assign to the out
parameter. For example, the following code displays the values 44.44 , 44.44:

static void PassCoordinateByOut(out coordinate c)
{

c = new coordinate();

C.X = Cc.y = 44.44;
}
coordinate loc = new coordinate();
PassCoordinateByOut(out loc);
Console.WriteLine(loc.x + "," + loc.y);

14

Module 8: Using Reference-Type Variables

Passing References into Methods

Variables of reference types do not hold the value directly, but hold a reference
to the value instead. This also applies to method parameters, and this means that
the pass-by-value mechanism can produce unexpected results.

Using the coordinate class as an example, consider the following method:

static void PassCoordinateByValue(coordinate c)

{

C.X++;
C.y++;

}

The coordinate parameter cis passed by value. In the method, both the x and y

member variables are incremented. Now consider the following code that calls
the PassCoor dinateByValue method:

coordinate loc = new coordinate();

loc.x = 2;

loc.y = 3;

PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

The output of this code is the following:

3,4

This shows that the values referenced by loc have been changed by the method.
This might seem to be in conflict with the explanation of pass by value given
previoudly in the course, but in fact it is consistent. The reference variable locis
copied into the parameter ¢ and cannot be changed by the method, but the
memory to which it refersis not copied and is under no such restriction. The

variable loc till refers to the same area of memory, but that area of memory
now contains different data.

Module 8: Using Reference-Type Variables 15

€ Using Common Reference Types

m Exception Class
m String Class
= Common String Methods, Operators, and Properties

m String Comparisons

m String Comparison Operators

A number of reference-type classes are built in to the C# language. In this

section, you will review some familiar built-in classes and learn more about
how they work.

Y ou can aso use these built-in classes as models when creating your own
classes.

16 Module 8: Using Reference-Type Variables

Exception Class

m Exception Is a Class
m Exception Objects Are Used to Raise Exceptions
e Create an Exception object by using new

e Throw the object by using throw

m Exception Types Are Subclasses of Exception

You create and throw Exception objects to raise exceptions.

Exception Class.
Exception is the name of a class provided in the .NET Framework.

Exception Objects

Only objects of Exception type can be thrown with throw and caught with
catch. In other respects, the Exception classis like other reference types.

Exception Types

Exception represents a generic fault in an application. There are also specific

exception types (such as I nvalidCastException). There are classes that inherit
from Exception that represent each of these specific exceptions.

Module 8: Using Reference-Type Variables 17

String Class

= Multiple Character Unicode Data
m Shorthand for System.String

= Immutable

string s = "Hell o";

s[0] ="'c'; /] Conpile-time error

In C#, the string type is used for processing multiple character Unicode

character data. (The char type, by comparison, is a value type that handles
single characters.)

The type name string is a shortened name for the System.Stringclass. The

compiler can process this shortened form; therefore string and System.String
can be used interchangeably.

The String class represents an immutable string of characters. An instance of
String isimmutable: the text of a string cannot be modified once it has been
created. Methods that might appear at first sight to modify a string value
actually return a new instance of string that contains the modification.

Tip The StringBuilder classis often used in partnership with the String class.
A StringBuilder builds an internally modifiable string that can be converted
into an immutable String when complete. StringBuilder removes the need to
repeatedly create temporary immutable Strings and can provide improved
performance.

The System.String class has many methods. This course will not provide afull
tutorial for string processing, but it will list some of the more useful methods.
For further details, consult the NET Framework SDK Help documents.

18 Module 8: Using Reference-Type Variables

Common String Methods, Operators, and Properties

m Brackets

= Insert Method

= Length Property

= Copy Method

= Concat Method

= Trim Method

= ToUpper and ToLower Methods

Brackets []

You can extract a single character at a given position in a string by using the

string name followed by the index in brackets ([and]). This processis similar
to using an array. The first character in the string has an index of zero.

The following code provides an example:

string s = "Alphabet"”
char firstchar = s[2]; // "p*

Strings are immutable, so assigning a character by using bracketsis not

permitted. Any attempt to assign a character to a string in this way will generate
a compile-time error, as shown:

s[2] = **"; // Not valid

Insert Method

If you want to insert charactersinto a string variable, use the Insert instance
method to return a new string with a specified value inserted at a specified
position in this string. This method takes two parameters: the position of the
start of the insertion and the string to insert.

The following code provides an example:

string s = "C is great!";
s = s.Insert(2, "Sharp ");
Console.WriteLine(s); // C Sharp is great!

Module 8: Using Reference-Type Variables 19

Length Property
The Length property returns the length of a string as an integer, as shown:

string msg = "Hello";
int slen = msg.Length; // 5

Copy Method

The Copy class method creates a new string by copying another string. The
Copy method makes a duplicate of a specified string.

The following code provides an example:

string s1 = "Hello";
string s2 = String.Copy(sl);

Concat Method

The Concat class method creates a new string from one or more strings or
objects represented as strings.

The following code provides an example:
string s3 = String.Concat("a"™, "b"™, "c", "d", "e", "f", "g");

The + operator is overloaded for strings, so the example above can be rewritten
as follows:

string s = "a" + "b" + "c" + "dU + e + "F' 4 vgh:
Console_WriteLine(s);

Trim Method

The Trim instance method removes al of the specified characters or white
space from the beginning and end of a string.

The following code provides an example:

string s = " Hello
s = s.Trim();
Console._WriteLine(s); // "Hello"

ToUpper and ToLower Methods

The ToUpper and ToLower instance methods return a string with all
characters converted to uppercase and lowercase, respectively, as shown:

string sText = "How to Succeed ";
Console._WriteLine(sText.ToUpper()); // HOW TO SUCCEED
Console._WriteLine(sText.ToLower()); // how to succeed

20 Module 8: Using Reference-Type Variables

String Comparisons

= Equals Method
e Value comparison
m Compare Method
e More comparisons
e Case-insensitive option

e Dictionary ordering

m Locale-Specific Compare Options

Y ou can use the == and != operators on string variables to compare string
contents.

Equals Method

The System.String class contains an instance method called Equals, which can
be used to compare two strings for equality. The method returns a bool value
that is true if the strings are the same and false otherwise. This method is
overloaded and can be used as an instance method or a static method. The
following example shows both forms.

string s1 = "Welcome";
string s2 = "Welcome";

if (sl.Equals(s2))
Console. WriteLine(""The strings are the same');

if (String.Equals(sl,s2))
Console._WriteLine("'The strings are the same™);

Module 8: Using Reference-Type Variables

21

Compare Method

The Compar e method compares two strings lexicaly; that is, it compares the
strings according to their sort order. The return value from Compare isas
follows:

= A negative integer if the first string comes before the second
= Oif the strings are the same
= A positive integer if the first string comes after the second

string sl = "Tintinnabulation";
string s2 = "Velocipede;
int comp = String.Compare(sl,s2); // Negative return

By definition, any string, including an empty string, compares greater than a
null reference, and two null references compare equal to each other.

Compareisoverloaded. There is aversion with three parameters, the third of
which isabool value that specifies whether the case should be ignored in the
comparison. The following example shows a case-insensitive comparison:

sl = "cabbage';
s2 = "Cabbage';
comp = String.Compare(sl, s2, true); // lgnore case

Locale-Specific Compare Options

The Compar e method has overloaded versions that alow string comparisons
based on language-specific sort orders. This can be useful when writing
applications for an international market. Further discussion of this feature is
beyond the scope of the course. For more information, search for
“System.Globalization namespace” and “Culturelnfo class’ inthe NET
Framework SDK Help documents.

22 Module 8: Using Reference-Type Variables

String Comparison Operators

m The == and != Operators Are Overloaded for Strings

= They Are Equivalent to String.Equals and !String.Equals

string a = "Test";
string b = "Test";
if (a==0D0b) ... /'l Returns true

The == and = operators are overloaded for the String class. Y ou can use these
operators to examine the contents of strings.

string a = "Test";
string b = "Test";
if (a==Db) ... // Returns true

The following operators and methods are equiva ent:

= The == operator is equivaent to the String.Equals method.
= The!= operator is equivalent to the !String.Equals method.

The other relational operators (<, >, <=, and >=) are not overloaded for the
String class.

Module 8: Using Reference-Type Variables 23

€ The Object Hierarchy

= The object Type

= Common Methods

m Reflection

The C# classes are arranged in a hierarchy with the Object class at the top. The

object type therefore describes the common behavior for al reference typesin
the C# language.

In this section, you will learn about the object type and how the object
hierarchy works.

24 Module 8: Using Reference-Type Variables

The object Type

= Synonym for System.Object

m Base Class for All Classes

oo
ETE ETT

InvalidCastException

N

The object typeisthe base class for al typesin C#.

System.Object

The aobject keyword is a synonym for the System.Object classin the .NET
Framework. Anywhere the keyword object appears, the class name
System.Object can be substituted. Because of its convenience, the shorter form
iS more common.

Base Class

All classes inherit from object either directly or indirectly. Thisincludes the
classes you write in your application and those classes that are part of the
system framework. When you declare a class with no explicit parent, you are
actually inheriting from object.

Module 8: Using Reference-Type Variables

25

Common Methods

= Common Methods for All Reference Types
e ToString method
e Equals method

e GetType method

e Finalize method

The aobject type has a number of common methods that are inherited by all
other reference types.

Common Methods for All Reference Types

The object type provides a number of common methods. Because every
reference type inherits from object, every other reference type in C# has these
methods too. These common methods include the following:

s ToString
s Equals

s GeType
= Finalize

26

Module 8: Using Reference-Type Variables

ToString Method
The ToString method returns a string that represents the current object.

The default implementation, as found in the Object class, returns the type name
of the class. The following example uses the coor dinate example class defined
earlier:

coordinate ¢ = new coordinate();
Console._WriteLine(c.ToString());

This example will display “coordinate” on the console.

However, you can override the ToString method in class coor dinate to render
objects of that type into something more meaningful, such as a string containing
the values held in the object.

Equals Method

The Equals method determines whether the specified object is the same
instance as the current object. The default implementation of Equals supports
reference equality only, as you have aready seen.

Subclasses can override this method to support value equality instead.

GetType Method

This method allows extraction of run-time type information from an object. It is
discussed in more detail in the Data Conversions section later in this module.

Finalize Method

This method is called by the run-time system when memory alocated to a
reference is released.

Module 8: Using Reference-Type Variables 27

Reflection

= You Can Query the Type of an Object

m System.Reflection Namespace

= The typeof Operator Returns a Type Object
e Compile-time classes only

m GetType Method in System.reflection

e Run-time class information

Y ou can obtain information about the type of an object by using a mechanism
caled reflection.

The reflection mechanism in C# is handled by the System.Reflection
namespace in the .NET Framework. This namespace contains classes and
interfaces that provide a view of types, methods, and fields.

The System.Type class provides methods for obtaining information about a
type declaration, such as the constructors, methods, fields, properties, and
events of aclass. A Type object that represents a type is unique; that is, two
Type object references refer to the same object only if they represent the same
type. This allows comparison of Type objects through reference comparisons
(the == and != operators).

28

Module 8: Using Reference-Type Variables

The typeof Operator

At compile time, you can use the typeof operator to return the type information
from a given type name.

The following example retrieves run-time type information for the type byte,
and displays the type name to the console.

using System;

using System.Reflection;

Type t = typeof(byte);
Console_WriteLine("Type: {0}, t);

The following example displays more detailed information about a class.
Specificaly, it lists the methods for that class.

using System;

using System.Reflection;

Type t = typeof(string); // Get type information

MethodInfo[] mi = t.GetMethods();

foreach (MethodInfo m in mi) {
Console.WriteLine(""Method: {0}, m);

}

GetType Method

The typeof operator only works on classes that exist at compiletime. If you

need type information at run time, you can use the GetType method of the
Object class.

For more information about reflection, search for “ System.Reflection” in
the .NET Framework SDK Help documents

Module 8: Using Reference-Type Variables 29

€ Namespaces in the .NET Framework

m System.|O Namespace
m System.XML Namespace
m System.Data Namespace

m Other Useful Namespaces

The .NET Framework provides common language services to a variety of
application development tools. The classes in the framework provide an
interface to the Common Language Runtime, the operating system, and the
network.

In this section, you will learn how to use some of the common namespaces
within the framework. You are likely to use these namespaces on aregular basis,
so it isimportant to be familiar with them.

The .NET Framework islarge and powerful, and full coverage of every feature
is beyond the scope of this course. For more detailed information, please
consult the Visual Studio.NET and .NET Framework SDK Help documents.

30 Module 8: Using Reference-Type Variables

System.lO Namespace

m Access to File System Input/Output
e File, Directory
e StreamReader, StreamWriter
e FileStream

e BinaryReader, BinaryWriter

The System.l O namespace is important because it contains many classes that

allow an application to perform input and output (1/O) operations in various
ways through the file system.

The System.l O namespace a so provides classes that alow an application to
perform input and output operations on files and directories.

The System.lO namespace is large and cannot be explained in detail here.
However, the following list gives an indication of the facilities available:

m The Fileand Directory classes allow an application to create, delete, and
manipul ate directories and files.

m The StreamReader and StreamWriter classes enable a program to access
file contents as a stream of bytes or characters.

m The FileStream class can be used to provide random accessto files.

m The BinaryReader and BinaryWriter classes provide away to save and
load objects to and from streams.

Module 8: Using Reference-Type Variables 31

System.lO Example

A brief example follows, to show how afile can be opened and read as a stream.
The example is not meant to illustrate all of the possible ways in which the

System.| O namespace can be used, but does show how you can perform a
simple file copy operation.

using System;

using System.10; // Use 10 namespace

// ...

StreamReader reader = new StreamReader(infile.txt");
// Text in from file

StreamWriter writer = new StreamWriter(outfile.txt"™);
// Text out to file

string line;

whille ((line = reader.ReadLine()) != null)

{

writer.WriteLine(line);

}

reader _Close();
writer.Close();

To open afile for reading, the code in the example creates a new
StreamReader object and passes the name of the file that needs to be opened
in the constructor. Similarly, to open afile for writing, the example creates a
new StreamWoriter object and passes the output file name in its constructor. In
the example, the file names are hard-coded, but they could also be string
variables.

The example program copies a file by reading one line at a time from the input
stream and writing that line to the output stream.

ReadL ine and WriteL ine might look familiar. The Console class has two
static methods of that name. In the example, the methods are instance methods
of the StreamReader and StreamWriter classes, respectively.

For more information about the System.| O namespace, search for “ System.|O
namespace” in the .NET Framework SDK Help documents.

32 Module 8: Using Reference-Type Variables

System.XML Namespace

m XML Support
m Various XML-Related Standards

Applications that need to interact with Extensible Markup Language (XML)

can use the Syssem. XML namespace, which provides standards-based support
for processing XML.

The System. XML namespace supports a number of XML-related standards,
including the following:

XML 1.0 with document type definition (DTD) support
XML namespaces

XML schemas

XPath expressions

XSL/T transformations

DOM Leve 2 core

Simple Object Access Protocol (SOAP) 1.1

The XML Document class is used to represent an entire XML document.
Elements and attributes in an XML document are represented in the
XMLElement and XMLAttribute classes.

A detailed discussion of XML namespaces is beyond the scope of this course.
For further information, search for “ System. XML namespace” inthe NET
Framework SDK Help documents.

Module 8: Using Reference-Type Variables 33

System.Data Namespace

m System.Data.SQL
e SQL Server specific
m System.Data.ADO
e Interact with OLEDB and ODBC

e Generic database drivers

The System.Data namespace contains classes that constitute the ADO.NET
architecture. The ADO.NET architecture enables you to build components that
efficiently manage data from multiple data sources. ADO.NET provides the
tools to request, update, and reconcile datain n-tier systems.

Within ADO.NET, you can use the DataSet class. In each DataSet, there are
DataT able objects, and each DataT able contains data from a single data
source, such as Microsoft SQL Server™.

The System.Data.SQL namespace provides direct access to SQL Server. Note
that this namespace is specific to SQL Server.

For access to other relationa databases and sources of structured data, there is
the System.Data.ADO namespace, which provides high-level accessto the
OLEDB and Open Database Connectivity (ODBC) database drivers.

A detailed discussion of the System namespaces is not within the scope of this
course. For further information, search for “System.Data namespace” in
the .NET Framework SDK Help documents.

34 Module 8: Using Reference-Type Variables

Other Useful Namespaces

m System Namespace
m System.Net Namespace
m System.Net.Sockets Namespace

m System.Windows.Forms Namespace

There are many other useful namespaces and classes in the .NET Framework.

This course does not discuss them all at length, but the following information
might be helpful when you search the reference files and documentation:

The System namespace contains classes that define commonly used value
and reference data types, events and event handlers, interfaces, attributes,
and processing exceptions. Other classes provide services that support data
type conversion, method parameter manipulation, mathematics, remote and
local program invocation, and application management.

The System.Net namespace provides a simple programming interface to
many of the protocols found on the network today. The System.Net.Sockets
namespace provides an implementation of the Microsoft Windowse Sockets
interface for developers who need to low-level accessto Transmission
Control Protocol/Internet Protocol (TCP/IP) network facilities.

System.WinForms is the graphical user interface (GUI) framework for

Windows applicaions, and provides support for forms, controls, and event
handlers.

For more information about System namespaces, search for “ System
namespace” in the NET Framework SDK Help documents.

Module 8: Using Reference-Type Variables

35

Lab 8.1: Defining And Using Reference-Type Variables

A
~

Objectives
After completing this lab, you will be able to:

m Create reference variables and pass them as method parameters.
m Use the system frameworks.

Prerequisites
Before working on this lab, you should be familiar with the following:

m Creating and using classes
m Calling methods and passing parameters
s Using arrays

Estimated time to complete this lab: 45 minutes

36 Module 8: Using Reference-Type Variables

Exercise 1

Adding an Instance Method with Two Parameters
In Lab 7, you developed a BankAccount class.

In this exercise, you will re-use this class and add a new instance method, called
Transfer From, which transfers money from a specified account into this one.

If you did not complete Lab 7, you can obtain a copy of the BankAccount class
inthe install folder\Labs\Lab08\Starter folder.

£ To create the Transfer From method

1. Open the Bank.dn project in the install folder\L abs\Lab08\Starter\Bank
folder.

2. Edit the BankAccount class asfollows:

a Create a public instance method called Transfer From in the
BankAccount class.

b. The first parameter is a reference to another Bank Account object, called
accFrom, from which the money isto be transferred.

c. The second parameter is a decimal value, caled amount, passed by
value and indicating the amount to transfer.

d. The method has no return vaue.

3. Inthe body of Transfer From, add two statements that perform the
following tasks:

a. Debit amount from the balance of accFrom (by using Withdraw).

b. Test to ensure that the withdrawal was successful. If it was, credit
amount to the balance of the current account (by using Deposit).

The BankAccount class should be as follows:
class BankAccount

{

. additional code omitted for clarity ...

public void TransferFrom(BankAccount accFrom, decimal
=amount)

{

if (accFrom.Withdraw(amount))
this.Deposit(amount);

}

4. Save and compile your code. Correct any errors.

Module 8: Using Reference-Type Variables 37

I To test the Transfer From method
1. Openthe Test class. Thisisthe test harness.

2. Inthe Main method, add code to create two BankAccount objects, each
having an initial balance of $100. (Use the Populate method.)

3. Add code to display the type, account number, and current balance of each
account.

4. Add codeto call Transfer From and move $10 from one accourt to the
other.

5. Add code to display the current balances after the transfer.

The Test class could be as follows:

static void Main()

{
BankAccount bl = new BankAccount();
bl_Populate(100);

BankAccount b2 = new BankAccount();
b2.Populate(100);

Console._WriteLine("'Before transfer™);
Console._WriteLine(™{0} {1} {2}",

bl.Type(), bl.Number(), bl.Balance());
Console._WriteLine("{0} {1} {2}",

b2.Type(), b2.Number(), b2.Balance());

bl.TransferFrom(b2, 10);

Console._WriteLine("'After transfer'™);
Console._WriteLine("{0} {1} {2}",
bl.Type(), bl.Number(), bl.Balance());
Console _WriteLine("{0} {1} {2}",
b2.Type(), b2_Number(), b2_.Balance());
}

6. Saveyour work.
7. Compile the project and correct any errors. Run and test the program.

38 Module 8: Using Reference-Type Variables

Exercise 2

Reversing a String

In Module 5, you developed a Utils class that contained a variety of utility
methods.

In this exercise, you will add a new static method called Rever se to the Utils

class. This method takes a string and returns a new string with the charactersin
reverse order.

£ To create the Rever se method

1

Open the Utils.gin project in the install folder\L abs\Lab08\Starter\Utils
folder.

Add a public static method called Rever se to the Utilsclass, as follows:
a Ithasasingle parameter called sthat is areference to a string.

b. The method has a void return type.

Inthe Reverse method, create a string variable caled sRev to hold the

returned string result. Initialize this stringto ™" .

. To create areversed string:

a Write aloop extracting one character at atime from s Start at the end
(usethe Length property), and work backwards to the start of the string.
You can use array notation ([]) to examine an individua character in a
string.

Tip Thelast character in astring is a position Length —1. Thefirst
character is at position O.

b. Append this character to the end of sRev.

Module 8: Using Reference-Type Variables

39

The Utils class might contain the following:

class Utils

{

}

. additional methods omitted for clarity ...

//
// Reverse a string
//

public static void Reverse(ref string s)

{
int k;
string sRev = ""';

for (k = s.Length — 1; k >= 0 ; k--)
sRev = sRev + s[k];

// Return result to caller
S = sRev;

}

I To test the Rever se method

Edit the Test class. This class contains the test harness.

Inthe Main method, create astring variable.

Read avaue into the string variable by using Console.ReadL ine.

a M wDdPE

Pass the string into Rever se. Do not forget the ref keyword.
Display the value returned by Reverse

The Test class might contain the following:

static void Main()

{

}

string message;

// Get an input string
Console._WriteLine("Enter string to reverse:");
message = Console.ReadLine();

// Reverse the string
Utils.Reverse(ref message);

// Display the result
Console_WriteLine(message);

6. Saveyour work.
7. Compile the project and correct any errors. Run and test the program.

40 Module 8: Using Reference-Type Variables

Exercise 3

Making an Uppercase Copy of a File

In this exercise, you will write a program that prompts the user for the name of
atext file. The program will check that the file exists, displaying a message and
quitting if it does not. The file will be opened and copied to another file (prompt
the user for the file name), but with every character converted to uppercase.

Before you start, you might want to look briefly at the documentation for

System.l O in the .NET Framework SDK Help documents. In particular, look at
the documentation for the StreamReader and StreamWriter classes.

I To create the file-copying application

1. Open the CopyFileUpper.sin project in the install folder\
Labs\Lab08\Starter\CopyFileUpper folder.

2. Edit the CopyFileUpper class and add a using statement for the System.|O
namespace.

3. IntheMain method, declare two stringvariables called sFromand sTo to
hold the input and output file names.

4. Declare avariable of type StreamReader caled srFrom. This variable will
hold the reference to the inpuit file.

5. Declare avariable of type StreamWriter called snTo. This variable will
hold the reference to the output stream.

6. Prompt for the name of the input file, read the name, and store it in the
string variable sFrom.

7. Prompt for the name of the output file, read the name, and store it in the
string vaiable sTo.

8. The I/O operations that you will use can raise exceptions, so begin a try-
catch block that can catch FileNotFoundException (for non-existent files)

and Exception (for any other exceptions). Print out a meaningful message
for each exception.

9. Inthetry-catch block, create anew StreamReader object using the input
file name in sFrom, and store it in the StreamReader reference variable
srFrom.

10.Similarly, create a new StreamWriter object using the input file name in
sTo, and storeit in the StreamW riter reference variable swTo.

11.Add a while loop that loops if the Peek method of the input stream does not
return -1. Within the loop:

a Usethe ReadLl ine method on the input stream to read the next line of
input into a string variable caled sBuffer.

b. Perform the ToUpper method on sBuffer.
c. Usethe WriteLine method to send sBuffer to the output stream.
12. After the loop has finished, close the input and output streams.

Module 8: Using Reference-Type Variables

41

13.The CopyFileUpper.cs file should be as follows:

using System;
using System.I10;

class CopyFileUpper

{

static void Main()

{

}

string sFrom, sTo;
StreamReader srFrom;
StreamWriter swTo;

// Prompt for input file name
Console. Write(""'Copy from:™);
sFrom = Console.ReadLine();

// Prompt for output file name
Console._Write(""Copy to:");
sTo = Console.ReadLine();

Console._WriteLine(""Copy from {0} to {1}", sFrom,
=sTo);

try
{
srFrom = new StreamReader(sFrom);
swTo = new StreamWriter(sTo);
whille (srFrom.Peek()!=-1)
{
string sBuffer = srFrom.ReadLine();
sBuffer = sBuffer.ToUpper();
swTo.WriteLine(sBuffer);
}
swTo.Close();
srFrom.Close();
}
catch (FileNotFoundException)
{
Console_WriteLine("Input file not found™);
}
catch (Exception e)
{
Console._WriteLine("'Unexpected exception™);
Console._WriteLine(e.ToString());
}

14. Save your work. Compile the project and correct any errors.

42 Module 8: Using Reference-Type Variables

I Totest the program

1. Open a Command window and go to the install folder\
L abs\L ab08\Starter\CopyFileUpper \bin\debug folder.

2. Execute CopyFileUpper .

3. When prompted, specify a source file name of
drive:\path\CopyFileUpper.cs

(Thisisthe source file you have just created.)
4. Specify adestination file of Test.cs

5. When the program is finished, use a text editor to examine the Test.cs file. It
should contain a copy of your source code in all uppercase letters.

Module 8: Using Reference-Type Variables 43

& Data Conversions

m Converting Value Types

m Parent/Child Conversions

m The is Operator

m The as Operator

m Conversions and the object Type

m Conversions and Interfaces

m Boxing and Unboxing

This section explains how to performdata conversions between reference types
in C#. You can convert references from one type to another, but the reference
types must be related.

In this section, you will learn about:

= Permitted and prohibited conversions between reference types.
= Conversion mechanisms (casts, is, and &s).
m Specid considerations for conversion to and from the object type.

m The reflection mechanism, which allows examination of run-time type
information.

= Automatic conversions (boxing and unboxing) between value types and
referencetypes.

44 Module 8: Using Reference-Type Variables

Converting Value Types

= Implicit Conversions

m Explicit Conversions
e Cast operator

m Exceptions

m System.Convert Class

e Handles the conversions internally

C# supports implicit and explicit data conversions.

Implicit Conversions

For value types, you have learned about two ways to convert data: implicit
conversion and explicit conversion using the cast operator.

Implicit conversion occurs when a value of one type is assigned to another type.
C# only alows implicit conversion for certain combinations of types, typicaly
when the first value can be converted to the second without any dataloss. The
following example shows how data is converted implicitly from int to long:

int a = 4;
long b;
b = a; /7 Implicit conversion of int to long

Explicit Conversions
Y ou can explicitly convert value types by using the cast operator, as shown:
int a;

long b = 7;
a = (int) b;

Module 8: Using Reference-Type Variables 45

Exceptions

When you use the cast operator, you should be aware that problems might occur
if the value cannot be held in the target variable. If a problem is detected during
an explicit conversion (such as trying to fit the value 9,999,999,999 into an int
variable), C# might raise an exception (in this case, the OverflowException). If
you want, you can catch this exception by using try and catch, as shown:

try {
a = checked((int) b);

}

catch (Exception) {
Console._WriteLine("Problem in cast');

}

For operations that involve integers, use the checked keyword or compile with
the appropriate compiler settings, otherwise checking will not be performed.

System.Convert Class

Conversions between the different base types (such asint, long, and bool) are
handled within the NET Framework by the System.Convert class.

You do not usually need to make calls to methods of System.Convert. The
compiler handles these calls automatically.

46 Module 8: Using Reference-Type Variables

Parent/Child Conversions

m Conversion to Parent Class Reference
o Implicit or explicit
e Always succeeds
e Can always assign to object
m Conversion to Child Class Reference
e Explicit casting required
o Will check that the reference is of the correct type

o Will raise InvalidCastException if not

You can convert areference to an object of a child class to an object of its
parent class, and vice versa, under certain conditions.

Conversion to Parent Class Reference

References to objects of one class type can be converted into references to
another type if one class inherits from the other, either directly or indirectly.

A reference to an object can aways be converted to areference to a parent class
object. This conversion can be performed implicitly (by assignment or as part
of an expression) or explicitly (by using the cast operator).

The following examples will use two classes: Animal and Bird. Animal isthe
parent class of Bird, or, to put it another way, Bird inherits from Animal.

The following example declares a variable of type Animal and a variable of
type Bird:

Animal a;
Bird b;

Now consider the following assignment, in which the referencein b is copied to
a

a = b;

The Birdclass inherits from the Animal class. Therefore, a method that is
found in Animal isaso found in Bird. (The Bird class might have overridden
some of the methods of Animal to create its own version of them, but an
implementation of the method will exist nonetheless.) Therefore, it is possible
for referencesto Bird objects to be assigned to variables containing references
to values of type Animal.

Module 8: Using Reference-Type Variables 47

In this case, C# performs a type conversion from Bird to Animal. You can
explicitly convert Bird to Animal by using a cast operator, as shown:

a = (Animal) b;

The preceding code will produce exactly the same result.

Conversion to Child Class Reference

Y ou can convert areference to a child type, but you must explicitly specify the
conversion by using a cast. An explicit conversion is subject to run-time
checking to ensure that the types are compatible, as shown in the following
example:

Bird b = (Bird) a; // Okay

This code will compile successfully. At run time, the cast operator performs a

check to determine whether the value in the variable redlly is of type Bird. If it
is not, the run-time I nvalidCastException is raised.

If you attempt to assign to a child typewithout a conversion operator, asin the

following code, the compiler will display an error message stating, “ Cannot
convert implicitly type ‘ Animal’ to type * Bird'”

b = a; // Will not compile

You can trap atype conversion error by using try and catch, just like any other
exception, as shown in the following code:

try {
b = (Bird) a;

}

catch (InvalidCastException) {
Console.WriteLine("'Not a bird™);

}

48 Module 8: Using Reference-Type Variables

The is Operator

m Returns true If a Conversion Can Be Made

Bird b;
if (ais Bird)
b = (Bird) a; // Safe
el se
Consol e. WiteLine("Not a Bird");

Y ou can handle incompatible types by catching I nvalidCastException, but
there are other ways of handling this problem, such as the is operator.

You can usethe is operator to test the type of the object without performing a
conversion. The is operator returns true if the value on the left is not null and a
cast to the class on the right, if performed, would complete without throwing an
exception. Otherwise, isreturns false

if (a is Bird)

b = (Bird) a; // Safe, because "a is Bird" returns true
else

Console.WriteLine("'Not a Bird™);

You can think of the relationship between inherited classes as an “is a kind of”
relationship, asin“ A bird isakind of anima.” Referencesin the variale a
must be referencesto Animal objects, and b isakind of animal. Of course, bis
abird aswell, but abird isjust a specia case of an animal. The converseis not
true. An animal is not atype of bird. Some animals are birds, but it is not true
that all animals are birds.

So the following expression can be read as “If aisakind of bird,” or “If aisa
bird or a type derived from bird.”

if (a is bird)

Module 8: Using Reference-Type Variables 49

The as Operator

m Converts Between Reference Types, Like Cast
= On Error
e Returns null

e Does not raise an exception

Bird b = a as Bird; // Convert

if (b ==null)
Consol e.WiteLine("Not a bird");

You can usethe as operator to perform conversions between types.

Example

The following statement performs a conversion of the reference in ato avaue
that references a class of type Bird, and the runtime automatically checksto
ensure that the conversion is acceptable.

b = a as Bird;

Error Handling

The as operator differs from the cast operator in the way it handles errors. If, in
the preceding example, the reference in variable a cannot be converted in a
reference to an object of class Bird, the value null is stored in b, and the
program continues. The as operator never raises an exception.

Y ou can rewrite the previous code as follows to display an error message if the
conversion cannot be performed:

Bird b = a as Bird;
if (b == null)
Console.WriteLine("'Not a bird™);

Although as never raises an exception, any attempt to access through the

converted value will raise a NullRefer enceException if it is null. Therefore,
you should aways check the return value from as

50

Module 8: Using Reference-Type Variables

Conversions and the object Type

m The object Type Is the Base for All Classes

m Any Reference Can Be Assigned to object

= Any object Variable Can Be Assigned to Any Reference
o With appropriate type conversion and checks

m The object Type and is

obj ect ox;

oX = a; b = (Bird) ox;

ox = (object) a; b = ox as Bird

oX = a as object; _

All reference types are based on the object type. T his means that any reference
can be stored in avariable of type aobject.

The object Type Is the Base for All Classes
The object type is the base for al reference types.

Any Reference Can Be Assigned to object

Because al classes are based directly or indirectly on the object type, you can

assign any reference to a variable of type object, either with an implicit
conversion or with a cast. The following code provides an example:

object ox;

OoX = aj;

ox = (object) a;
OX = a as object;

Any object Variable Can Be Assigned to Any Reference
Y ou can assign avalue of type object to any other object reference, if you cast
it correctly. Remember that the run-time system will perform a check to ensure

that the value being assigned is of the correct type. The following code provides
an example:

b
b

(Bird) ox;
ox as Bird;

Module 8: Using Reference-Type Variables

51

The preceding examples can be written with full error checking as follows:

try {
b = (Bird) ox;

}

catch (InvalidCastException) {
Console._WriteLine(""Cannot convert to Bird");

}

b = ox as Bird;
if (b == null)
Console._WriteLine(""Cannot convert to Bird");

The object Type and is

Because every value is derived ultimately from object, checking a value with
theisoperator to seeif it isan object will awaysreturn true.

if (a is object) // Always returns true

52 Module 8: Using Reference-Type Variables

Conversion and Interfaces

m An Interface Can Only Be Used to Access Its Own
Members

m Other Methods and Variables of the Class Are Not
Accessible Through the Interface

Y ou can perform conversions by using the casting operators, as andis, when
working with interfaces.

For example, you can declare avariable of an interface type, as shown:

IHashCodeProvider hcp;

Converting a Reference to an Interface

Y ou can use the cast operator to convert the object reference into a reference to
a given interface, as shown:

IHashCodeProvider hcp;
hcp = (IHashCodeProvider) Xx;

As with conversion between class references, the cast operator will raise an
InvalidCastException if the object provided does not implement the interface.
Y ou should determine whether an object supports an interface before casting
the object, or use try and catch to trap the exception.

Determining Whether an Interface Is Implemented

Y ou can use the is operator to determine whether an object supports an
interface. The syntax is the same as the syntax used for classes:

if (x is IHashCodeProvider) ...

Module 8: Using Reference-Type Variables 53

Using the as Operator
Y ou can also usethe as operator as an alternative to casting, as shown:

IHashCodeProvider hcp;
hcp = x as IHashCodeProvider;

As with conversion between classes, if the reference that is being converted
does not support the interface, the as operator returns null.

After you have converted a reference to a class into a reference to an interface,

the new reference can only access members of that interface, and cannot access
the other public members of the class.

Example

Consider the following example to learn how converting references to
interfaces works. Suppose you have created an interface called 1 Visual that
specifies amethod called Paint, as follows:

interface 1Visual

{
void Paint();

}

Suppose that you also have a Rectangle class that implements the 1 Visual
interface. It implements the Paint method, but it can aso define its own
methods. In this example, Rectangle has defined an additional method called
Move that is not part of 1Visual.

You can create a Rectangle, r, and use its Move and Paint methods, as you
would expect. You can even reference it through an | Visual variable, v.
However, despite the fact that v and r both refer to the same object in memory,
you cannot call the Move method by using v because it is not part of the

I Visual interface. The following code provides examples:

Rectangle r = new Rectangle();

r.Move(); // Okay
r.Paint(); // Okay
IVisual v = (IVisual) r;
v.Move(); // Not valid

v._Paint(); // Okay

54

Module 8: Using Reference-Type Variables

Boxing and Unboxing

m Unified Type System
= Boxing
= Unboxing

m Calling Object Methods on Value Types

int p=123;
obj ect box; p = (int)box;
box = p; 123

. 123

C# can convert value types into object references and object references into
value types.

Unified Type System

C# has a unified type system that allows value types to be converted to
references of type object and object references to be converted into value types.
Value types can be converted into references of type object, and vice versa.

Values of types like int and bool can therefore be handled as simple values most
of thetime. Thisis normally the most efficient technique because there is none
of the overhead that is associated with references. However, when you want to

use these values as if they were references, they can be temporarily boxed for
you to do so.

Boxing
Expressions of value types can aso be converted to values of type object, and
back again. When avariable of value type needs to be converted to object type,

an object box is alocated to hold the value and the value is copied into the box.
This process is known as boxing

int p = 123;
object box;
box = p; // Boxing (implicit)
box = (object) p; // Boxing (explicit)

The boxing operation can be done implicitly, or explicitly with a cast to an
object. Boxing occurs most typically when a value type is passed to a parameter
of type object.

Module 8: Using Reference-Type Variables 55

Unboxing

When avauein an object is converted back into a vaue type, the value is
copied out of the box and into the appropriate storage location. This processis
known as unboxing.

p = (int) box; // Unboxing
Y ou must perform unboxing with an explicit cast operator.

If the value in the reference is not the exact type of the cast, the cast will raise
an | nvalidCastException.

Calling Object Methods on Value Types

Because boxing can take place implicitly, you can call methods of the object
type on any variable or expression, even those having value types. The
following code provides an example:

static void Show(object 0)

{

Console.WriteLine(o.ToString());
}
Show(42);

This works because the value 42 is implicitly boxed into an object parameter,
and the ToString method of this parameter is then called.

It produces the same result as the following code:

object o = (object) 42; // Box
Console_WriteLine(o.ToString());

Note Boxing does not occur when you call Object methods directly on a value.
For example, the expression 42.ToString() does not box 42 into an object.

Thisis because the compiler can statically determine the type and discerns
which method to call.

56 Module 8: Using Reference-Type Variables

Multimedia: Type-Safe Casting

Module 8: Using Reference-Type Variables 57

Lab 8.2 Converting Data

Objectives
After completing this lab, you will be able to:

= Convert values of one reference type to another.
m Test whether areference variable supports a given interface.

Prerequisites
Before working on this lab, you should be familiar with the following:

= Concepts of object-oriented programming
m Creating classes
= Defining methods

Estimated time to complete this lab: 30 minutes

58 Module 8: Using Reference-Type Variables

Exercise 1

Testing for the Implementation of an Interface

In this exercise, you will add a static method called | sl tFor mattable to the

Utils class that you created in Lab 5. If you did not complete that |ab, you can
obtain a copy of the class in the install folder \Labs\L ab08\Starter folder.

The IsltFormattable method takes one parameter of type object and tests
whether that parameter implements the System.| For mattable interface. If the

object does have this interface, the method will returntrue. Otherwise, it will
return false.

A class implements the System.l For mattable interface to return a string
representation of an instance of that class. Base types such as int and ulong
implement this interface (after the value has been boxed). Many reference types,
for example string, do not. User-defined types can implement the interface if
the developer requires it. For more information about this interface, consult

the .NET Framework SDK Help documentation.

Y ou will write test code that will call the Utils.IsltFormattable method with
arguments of different types and display the results on the screen.

£ To create the IsltFormattable method

1. Open the InterfaceTest.dn project in the install folder\
Labs\Lab08\Starter\InterfaceTest folder.

2. Edit the Utilsclass as follows:
a Create apublic static method called | sltFormattable inthe Utilsclass.

b. This method takes one parameter called x of type object that is passed
by value. The method returns a bool.

c. Usethe is operator to determine whether the passed object supportsthe
System.|For mattable interface. If it does, returntrue; otherwise return
false.

The completed method should be as follows:

using System;

class Utils

{
public static bool IsltFormattable(object x)
{
// Use the i1s operator to test whether the
// object has the IFormattable interface
if (x Is IFormattable)
return true;
else
return false;
}

Module 8: Using Reference-Type Variables 59

£ Totest the IsltFormattable method
1. Editthefile Test class.

2. Inthe Main method, declare and initialize variables of typesint, ulong, and
string.

3. Pass each variable to Utils.I sltFor mattable(), and print the result from each
call.

4. Theclass Test might be as follows:

using System;
class Test

{
static void Main()
{
int i=0;
ulong ul=0;
string s = "Test";

Console._WriteLine(int: {0}",
=Utils.IsltFormattable(i));

Console_WriteLine(ulong: {0}",
=Utils.IsltFormattable(ul));

Console._WriteLine(*'String: {0}",
=Utils.IsltFormattable(s));

}

}

5. Compile and test the code. Y ou should see true for the int and ulong values,
and false for thestringvaue.

60 Module 8: Using Reference-Type Variables

Exercise 2

Working with Interfaces

In this exercise, you will write a Display method that will use the as operator to

determine whether the object passed as a parameter supports a user - defined
interface called | Printable and call a method of that interface if it is supported.

I To create the Display method
1. Open the TestDisplay.sln project in the install folder\

Labs\Lab08\Starter\TestDisplay folder.

The starter code includes the definition for an interface called | Printable,
which contains a method called Print. A class that implements this interface
should use the Print method to display to the console the vaues held inside
the object. Also defined in the starter code filesis a class called Coordinate
that implementsthe | Printable interface.

A Coordinate object holds a pair of numbers that can define a position in
two-dimensional space. Y ou do not need to understand how the Coordinate
class works (although you might want to look at it). All you need to know is
that it implements the | Printable interface and that you can use the Print
method to display its contents.

. Edit the Utils class as follows:

a Addapublic static void method called Display inthe Utilsclass. This
method should take one parameter, an object passed by value, called
item.

b. In Display, declare an interface variable called ip of type | Printable.

c. Convert the reference in the parameter item into a reference to the
| Printable interface that uses the as operator. Store the result inip.

d. If thevaue of ip isnot null, usethe I Printableinterface to cdl Print. If
itisnull, the object does not support the interface. In this case, use
ConsoleWriteLine to display to results of the ToString method on the
parameter instead.

The completed method should be as follows:

public static void Display(object item)

{
IPrintable ip;

ip = (item as IPrintable);

if (ip !'= null)
ip.Print();
else
Console._WriteLine(item.ToString());

Module 8: Using Reference-Type Variables 61

I To test the Display method

1. Within the Main method in the Test class, create avariable of type int, a
variable of type string, and avariable of type Coordinate. To initidize the
Coordinate variable, you can use the two-parameter constructor:

Coordinate ¢ = new Coordinate(21.0, 68.0);

2. Passthese three variables, in turn, to Utils.Display to print them out.
3. The code should be as follows:

class Test
{
static void Main()
{
int num 65;
string msg "A String";
Coordinate c¢c = new Coordinate(21.0,68.0);

Utils.Display(num);
Utils.Display(msg);
Utils.Display(c);

}
4. Compile and test your application.

62 Module 8: Using Reference-Type Variables

If Time Permits
Testing the Method

If youwant to try the IsltFormattable method that you created in Exercise 1
with a user -defined class, use the BankAccount class that you developed in a
previous lab.

Re-write the Display method from Exercise 2 by using the cast operator.
Remember to catch any InvalidCastException that C# might throw in response
to errors.

Module 8: Using Reference-Type Variables 63

Review

m Using Reference-Type Variables
= Using Common Reference Types
m The Object Hierarchy

m Namespaces in the .NET Framework

m Data Conversions

1. Explain how amemory is alocated and de-allocated for a variable of
reference type.

2. What specia value indicates that a reference variable does not contain a
reference to an object? What happens if you try to access a reference
variable with this value?

3. List the key features of the Stringclass.

4. What typeisthe base type for all classes?

64 Module 8: Using Reference-Type Variables

5. Explain the difference between the cast operator and the as operator when
used to convert between class references.

6. List waysin which you can determine the type of an object.

