

Contents

Overview 1

Using Reference -Type Variables 2
Using Common Reference Types 15

The Object Hierarchy 23

Namespaces in the .NET Framework 29

Lab 8.1: Defining And Using Reference -
Variables 35

Data Conversions 43

Multimedia: Type-Safe Casting 56
Lab 8.2 Converting Data 57

Review 63

Module 8: Using
Reference-Type Variables

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in this
prerelease version. All labs in the course are to be completed with the Beta 1 version of
Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDN, PowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 8: Using Reference-Type Variables 1

Overview

n Using Reference-Type Variables

n Using Common Reference Types

n The Object Hierarchy

n Namespaces in the .NET Framework

n Data Conversions

In this module, you will learn how to use reference types in C#. You will learn
about a number of reference types, such as string, that are built into the C#
language and run-time environment. These are discussed as examples of
reference types.

You will also learn about the C# object hierarchy and the object type in
particular, so you can understand how the various reference types are related to
each other and to the value types. You will learn how to convert data between
reference types by using explicit and implicit conversions. You will also learn
how boxing and unboxing conversions convert data between reference types
and value types.

After completing this module, you will be able to:

n Describe the important differences between reference types and value types.

n Use common reference types, such as string.

n Explain how the object type works and become familiar with the methods it
supplies.

n Describe common namespaces in the Microsoft® .NET Framework.

n Determine whether different types and objects are compatible.

n Explicitly and implicitly convert data types between reference types.

n Perform boxing and unboxing conversions between reference and value data.

2 Module 8: Using Reference-Type Variables

u Using Reference-Type Variables

n Comparing Value Types to Reference Types

n Declaring and Releasing Reference Variables

n Invalid References

n Comparing Values and Comparing References

n Multiple References to the Same Object

n Using References as Method Parameters

Reference types are important features of the C# language. They enable you to
write complex and powerful applications and effectively use the run-time
framework.

In this section, you will learn about reference-type variables and about how
they are different from value-type variables. You will learn how to use and
discard reference variables. You will also learn how to pass reference types as
method parameters.

 Module 8: Using Reference-Type Variables 3

Comparing Value Types to Reference Types

n Value Types

l The variable
contains the
value directly

l Examples:
char, int

4242

int mol;
mol = 42;
int mol;
mol = 42; ••

string mol;
mol = "Hello";
string mol;
mol = "Hello";

HelloHello

n Reference Types

l The variable contains a
reference to the data

l Data is stored in a
separate memory area

C# supports basic data types such as int, long and bool. These types are also
referred to as value types. C# also supports more complex and powerful data
types known as reference types.

Value Types
Value-type variables are the basic built- in data types such as char and int. Value
types are the simplest types in C#. Variables of value type directly contain their
data in the variable.

Reference Types
Reference-type variables contain a reference to the data, not the data itself. The
data itself is stored in a separate memory area.

You have already used several reference types in this course so far, perhaps
without realizing it. Arrays, strings, and exceptions are all reference types that
are built into the C# compiler and the .NET Framework. Classes, both built- in
and user-defined, are also a kind of reference type.

4 Module 8: Using Reference-Type Variables

Declaring and Releasing Reference Variables

n Declaring Reference Variables

coordinate c1;
c1 = new coordinate();
c1.x = 6.12;
c1.y = 4.2;

coordinate c1;
c1 = new coordinate();
c1.x = 6.12;
c1.y = 4.2;

•• 6.126.12 4.24.2

c1 = null;c1 = null;

•• 6.126.12 4.24.2

n Releasing Reference Variables

To use reference-type variables, you need to know how to declare and initialize
them and how to release them.

Declaring Reference Variables
You declare reference-type variables by using the same syntax that you use
when declaring value-type variables:

coordinate c1;

The preceding example declares a variable c1 that can hold a reference to an
object of type coordinate. However, this variable is not initialized to reference
any coordinate objects.

To initialize a coordinate object, use the new operator. This creates a new
object and returns an object reference that can be stored in the reference
variable.

coordinate c1;
c1 = new coordinate();

If you prefer, you can combine the new operator with the variable declaration
so that the variable is declared and initialized in one statement, as follows:

coordinate c1 = new coordinate();

After you have created an object in memory to which c1 refers, you can then
reference member variables of that object by using the dot operator as shown in
the following example:

c1.x = 6.12;
c1.y = 4.2;

 Module 8: Using Reference-Type Variables 5

Example of Declaring Reference Variables
Classes are reference types. The following example shows how to declare a
user -defined class called coordinate. For simplicity, this class has only two
public member variables: x and y.

class coordinate
{
 public double x = 0.0;
 public double y = 0.0;
}

This simple class will be used in later examples to demonstrate how reference
variables can be created, used, and destroyed.

Releasing Reference Variables
After you assign a reference to a new object, the reference variable will
continue to reference the object until it is assigned to refer to a different object.

C# defines a special value called null. A reference variable contains null when
it does not refer to any valid object. To release a reference, you can explicitly
assign the value null to a reference variable (or simply allow the reference to go
out of scope).

6 Module 8: Using Reference-Type Variables

Invalid References

n If You Have Invalid References

l You cannot access members or variables

n Invalid References at Compile Time

l Compiler detects use of uninitialized references

n Invalid References at Run Time

l System will generate an exception error

You can only access the members of an object through a reference variable if
the reference variable has been initialized to point to a valid reference. If a
reference is not valid, you cannot access member variables or methods.

The compiler can detect this problem in some cases. In other cases, the problem
must be detected and handled at run time.

Invalid References at Compile Time
The compiler is able to detect situations in which a reference variable is not
initialized prior to use.

For example, if a coordinate variable is declared but not assigned, you will
receive an error message similar to the following: “Use of unassigned local
variable c1.” The following code provides an example:

coordinate c1;
c1.x = 6.12; // Will fail: variable not assigned

 Module 8: Using Reference-Type Variables 7

Invalid References at Run Time
In general, it is not possible to determine at compile time when a variable
reference is not valid. Therefore, C# will check the value of a reference variable
before it is used, to ensure that it is not null.

If you try to use a reference variable that has the value null, the run-time system
will throw a NullReferenceException exception. If you want, you can check
for this condition by using try and catch. The following is an example:

try {
 c1.x = 45;
}
catch (NullReferenceException) {
 Console.WriteLine("c1 has a null value");
}

Alternatively, you can check for null explicitly, thereby avoiding exceptions.
The following example shows how to check that a reference variable contains a
non-null reference before trying to access its members:

if (c1 != null)
 c1.x = 45;
else
 Console.WriteLine("c1 has a null value");

8 Module 8: Using Reference-Type Variables

Comparing Values and Comparing References

n Comparing Value Types

l == and != compare values

n Comparing Reference Types

l == and != compare the references, not the values

•• 1.01.0 2.02.0

•• 1.01.0 2.02.0

Different

The equality (==) and inequality (!=) operators might not work in the way you
expect for reference variables.

Comparing Value Types
For value types, you can use the == and != operators to compare values.

Comparing Reference Types
For reference types, you can use the == and != operators to compare references.
When comparing references with the == operator, you are determining whether
the two reference variables are referring to the same object. You are not
comparing the contents of the objects to which the variables refer.

 Module 8: Using Reference-Type Variables 9

Consider the following example, in which two coordinate variables are created
and initialized to the same values:

coordinate c1= new coordinate();
coordinate c2= new coordinate();
c1.x = 1.0;
c1.y = 2.0;
c2.x = 1.0;
c2.y = 2.0;
if (c1 == c2)
 Console.WriteLine("Same");
else
 Console.WriteLine("Different");

The output from this code is “Different.” Even though the objects that c1 and c2
are referring to have the same values, they are references to different objects, so
== returns false .

You cannot use the other relational operators (<, >, <=, and >=) for references
because they are not defined in C#.

10 Module 8: Using Reference-Type Variables

Multiple References to the Same Object

n Two References Can Refer to the Same Object

l Two ways to access the same object for read/write

coordinate c1= new coordinate();
coordinate c2;
c1.x = 2.3; c1.y = 7.6;
c2 = c1;
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

coordinate c1= new coordinate();
coordinate c2;
c1.x = 2.3; c1.y = 7.6;
c2 = c1;
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

••
2.32.3 7.67.6

••

c1

c2

Two reference variables can refer to the same object because reference
variables hold a reference to the data. This means that you can write data
through one reference and read the same data through another reference.

Multiple References to the Same Object
In the following example, the variable c1 is initialized to point to a new
instance of the class, and its member variables x and y are initialized. Then c1 is
copied to c2. Finally, the values in the objects that c1 and c2 reference are
displayed.

coordinate c1 = new coordinate();
coordinate c2;
c1.x = 2.3;
c1.y = 7.6;
c2 = c1;
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

The output of this program is as follows:

2.3 , 7.6
2.3 , 7.6

Assigning c2 to c1 copies the reference so that both variables are referencing
the same instance. Therefore, the values printed for the member variables of c1
and c2 are the same.

 Module 8: Using Reference-Type Variables 11

Writing and Reading the Same Data Through Different
References
In the following example, an assignment has been added immediately before
the calls to Console.WriteLine.

coordinate c1 = new coordinate();
coordinate c2;
c1.x = 2.3;
c1.y = 7.6;
c2 = c1;
c1.x = 99; // This is the extra statement
Console.WriteLine(c1.x + " , " + c1.y);
Console.WriteLine(c2.x + " , " + c2.y);

The output of this program is as follows:

99 , 7.6
99 , 7.6

This shows that the assignment of 99 to c1.x has also changed c2.x. Because the
reference in c1 was previously assigned to c2, a program can write data through
one reference and read the same data through another reference.

12 Module 8: Using Reference-Type Variables

Using References as Method Parameters

n References Can Be Used as Parameters

l When passed by reference, data being referenced may
be changed

static void PassCoordinateByValue(coordinate c)
{

c.x++; c.y++;
}

static void PassCoordinateByValue(coordinate c)
{

c.x++; c.y++;
}

loc.x = 2; loc.y = 3;
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

loc.x = 2; loc.y = 3;
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

2 32 3 3 43 4

••

••

You can pass reference variables in and out of a method.

References and Methods
You can pass reference variables into methods as parameters by using any of
the three calling mechanisms:

n By value

n By reference

n Output parameters

The following example shows a method that passes three coordinate references.
The first is passed by value, the second is passed by reference, and the third is
an output parameter. The return value of the method is a coordinate reference.

static coordinate Example(
 coordinate ca,
 ref coordinate cb,
 out coordinate cc)
{
 // ...
}

 Module 8: Using Reference-Type Variables 13

Passing References by Value
When you use a reference variable as a value parameter, the method receives a
copy of the reference. This means that for the duration of the call there are two
references referencing the same object. It also means that any changes to the
method parameter cannot affect the calling reference. For example, the
following code displays the values 0 , 0:

static void PassCoordinateByValue(coordinate c)
{
 c = new coordinate();
 c.x = c.y = 22.22;
}
coordinate loc = new coordinate();
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

Passing References by Reference
When you use a reference variable as a ref parameter, the method receives the
actual reference variable. In contrast to passing by value, in this case there is
only one reference. The method does not make its own copy. This means that
any changes to the method parameter will affect the calling reference. For
example, the following code displays the values 33.33 , 33.33:

static void PassCoordinateByRef(ref coordinate c)
{
 c = new coordinate();
 c.x = c.y = 33.33;
}
coordinate loc = new coordinate();
PassCoordinateByRef(ref loc);
Console.WriteLine(loc.x + "," + loc.y);

Passing References by Output
When you use a reference variable as an out parameter, the method receives the
actual reference variable. In contrast to passing by value, in this case there is
only one reference. The method does not make its own copy. Passing by out is
similar to passing by ref except that the method must assign to the out
parameter. For example, the following code displays the values 44.44 , 44.44:

static void PassCoordinateByOut(out coordinate c)
{
 c = new coordinate();
 c.x = c.y = 44.44;
}
coordinate loc = new coordinate();
PassCoordinateByOut(out loc);
Console.WriteLine(loc.x + "," + loc.y);

14 Module 8: Using Reference-Type Variables

Passing References into Methods
Variables of reference types do not hold the value directly, but hold a reference
to the value instead. This also applies to method parameters, and this means that
the pass-by-value mechanism can produce unexpected results.

Using the coordinate class as an example, consider the following method:

static void PassCoordinateByValue(coordinate c)
{
 c.x++;
 c.y++;
}

The coordinate parameter c is passed by value. In the method, both the x and y
member variables are incremented. Now consider the following code that calls
the PassCoordinateByValue method:

coordinate loc = new coordinate();
loc.x = 2;
loc.y = 3;
PassCoordinateByValue(loc);
Console.WriteLine(loc.x + " , " + loc.y);

The output of this code is the following:

3 , 4

This shows that the values referenced by loc have been changed by the method.
This might seem to be in conflict with the explanation of pass by value given
previously in the course, but in fact it is consistent. The reference variable loc is
copied into the parameter c and cannot be changed by the method, but the
memory to which it refers is not copied and is under no such restriction. The
variable loc still refers to the same area of memory, but that area of memory
now contains different data.

 Module 8: Using Reference-Type Variables 15

u Using Common Reference Types

n Exception Class

n String Class

n Common String Methods, Operators, and Properties

n String Comparisons

n String Comparison Operators

A number of reference-type classes are built in to the C# language. In this
section, you will review some familiar built-in classes and learn more about
how they work.

You can also use these built-in classes as models when creating your own
classes.

16 Module 8: Using Reference-Type Variables

Exception Class

n Exception Is a Class

n Exception Objects Are Used to Raise Exceptions

l Create an Exception object by using new

l Throw the object by using throw

n Exception Types Are Subclasses of Exception

You create and throw Exception objects to raise exceptions.

Exception Class.
Exception is the name of a class provided in the .NET Framework.

Exception Objects
Only objects of Exception type can be thrown with throw and caught with
catch. In other respects, the Exception class is like other reference types.

Exception Types
Exception represents a generic fault in an application. There are also specific
exception types (such as InvalidCastException). There are classes that inherit
from Exception that represent each of these specific exceptions.

 Module 8: Using Reference-Type Variables 17

String Class

n Multiple Character Unicode Data

n Shorthand for System.String

n Immutable

string s = "Hello";

s[0] = 'c'; // Compile-time error

string s = "Hello";

s[0] = 'c'; // Compile-time error

In C#, the string type is used for processing multiple character Unicode
character data. (The char type, by comparison, is a value type that handles
single characters.)

The type name string is a shortened name for the System.String class. The
compiler can process this shortened form; therefore string and System.String
can be used interchangeably.

The String class represents an immutable string of characters. An instance of
String is immutable: the text of a string cannot be modified once it has been
created. Methods that might appear at first sight to modify a string value
actually return a new instance of string that contains the modification.

The StringBuilder class is often used in partnership with the String class.
A StringBuilder builds an internally modifiable string that can be converted
into an immutable String when complete. StringBuilder removes the need to
repeatedly create temporary immutable Strings and can provide improved
performance.

The System.String class has many methods. This course will not provide a full
tutorial for string processing, but it will list some of the more useful methods.
For further details, consult the .NET Framework SDK Help documents.

Tip

18 Module 8: Using Reference-Type Variables

Common String Methods, Operators, and Properties

n Brackets

n Insert Method

n Length Property

n Copy Method

n Concat Method

n Trim Method

n ToUpper and ToLower Methods

Brackets []
You can extract a single character at a given position in a string by using the
string name followed by the index in brackets ([and]). This process is similar
to using an array. The first character in the string has an index of zero.

The following code provides an example:

string s = "Alphabet"
char firstchar = s[2]; // 'p'

Strings are immutable, so assigning a character by using brackets is not
permitted. Any attempt to assign a character to a string in this way will generate
a compile-time error, as shown:

s[2] = '*'; // Not valid

Insert Method
If you want to insert characters into a string variable, use the Insert instance
method to return a new string with a specified value inserted at a specified
position in this string. This method takes two parameters: the position of the
start of the insertion and the string to insert.

The following code provides an example:

string s = "C is great!";
s = s.Insert(2, "Sharp ");
Console.WriteLine(s); // C Sharp is great!

 Module 8: Using Reference-Type Variables 19

Length Property
The Length property returns the length of a string as an integer, as shown:

string msg = "Hello";
int slen = msg.Length; // 5

Copy Method
The Copy class method creates a new string by copying another string. The
Copy method makes a duplicate of a specified string.

The follow ing code provides an example:

string s1 = "Hello";
string s2 = String.Copy(s1);

Concat Method
The Concat class method creates a new string from one or more strings or
objects represented as strings.

The following code provides an example:

string s3 = String.Concat("a", "b", "c", "d", "e", "f", "g");

The + operator is overloaded for strings, so the example above can be re-written
as follows:

string s = "a" + "b" + "c" + "d" + "e" + "f" + "g";
Console.WriteLine(s);

Trim Method
The Trim instance method removes all of the specified characters or white
space from the beginning and end of a string.

The following code provides an example:

string s = " Hello ";
s = s.Trim();
Console.WriteLine(s); // "Hello"

ToUpper and ToLower Methods
The ToUpper and ToLowe r instance methods return a string with all
characters converted to uppercase and lowercase, respectively, as shown:

string sText = "How to Succeed ";
Console.WriteLine(sText.ToUpper()); // HOW TO SUCCEED
Console.WriteLine(sText.ToLower()); // how to succeed

20 Module 8: Using Reference-Type Variables

String Comparisons

n Equals Method

l Value comparison

n Compare Method

l More comparisons

l Case-insensitive option

l Dictionary ordering

n Locale-Specific Compare Options

You can use the == and != operators on string variables to compare string
contents.

Equals Method
The System.String class contains an instance method called Equals, which can
be used to compare two strings for equality. The method returns a bool value
that is true if the strings are the same and false otherwise. This method is
overloaded and can be used as an instance method or a static method. The
following example shows both forms.

string s1 = "Welcome";
string s2 = "Welcome";

if (s1.Equals(s2))
 Console.WriteLine("The strings are the same");

if (String.Equals(s1,s2))
 Console.WriteLine("The strings are the same");

 Module 8: Using Reference-Type Variables 21

Compare Method
The Compare method compares two strings lexically; that is, it compares the
strings according to their sort order. The return value from Compare is as
follows:

n A negative integer if the first string comes before the second

n 0 if the strings are the same

n A positive integer if the first string comes after the second

string s1 = "Tintinnabulation";
string s2 = "Velocipede";
int comp = String.Compare(s1,s2); // Negative return

By definition, any string, including an empty string, compares greater than a
null reference, and two null references compare equal to each other.

Compare is overloaded. There is a version with three parameters, the third of
which is a bool value that specifies whether the case should be ignored in the
comparison. The following example shows a case-insensitive comparison:

s1 = "cabbage";
s2 = "Cabbage";
comp = String.Compare(s1, s2, true); // Ignore case

Locale-Specific Compare Options
The Compare method has overloaded versions that allow string comparisons
based on language-specific sort orders. This can be useful when writing
applications for an international market. Further discussion of this feature is
beyond the scope of the course. For more information, search for
“System.Globalization namespace” and “CultureInfo class” in the .NET
Framework SDK Help documents.

22 Module 8: Using Reference-Type Variables

String Comparison Operators

n The == and != Operators Are Overloaded for Strings

n They Are Equivalent to String.Equals and !String.Equals

string a = "Test";
string b = "Test";
if (a == b) ... // Returns true

string a = "Test";
string b = "Test";
if (a == b) ... // Returns true

The == and != operators are overloaded for the String class. You can use these
operators to examine the contents of strings.

string a = "Test";
string b = "Test";
if (a == b) ... // Returns true

The following operators and methods are equivalent:

n The == operator is equivalent to the String.Equals method.

n The != operator is equivalent to the !String.Equals method.

The other relational operators (<, >, <=, and >=) are not overloaded for the
String class.

 Module 8: Using Reference-Type Variables 23

u The Object Hierarchy

n The object Type

n Common Methods

n Reflection

The C# classes are arranged in a hierarchy with the Object class at the top. The
object type therefore describes the common behavior for all reference types in
the C# language.

In this section, you will learn about the object type and how the object
hierarchy works.

24 Module 8: Using Reference-Type Variables

The object Type

n Synonym for System.Object

n Base Class for All Classes

Exception

InvalidCastException

MyClass

Object

String

The object type is the base class for all types in C#.

System.Object
The object keyword is a synonym for the System.Object class in the .NET
Framework. Anywhere the keyword object appears, the class name
System.Object can be substituted. Because of its convenience, the shorter form
is more common.

Base Class
All classes inherit from object either directly or indirectly. This includes the
classes you write in your application and those classes that are part of the
system framework. When you declare a class with no explicit parent, you are
actually inheriting from object.

 Module 8: Using Reference-Type Variables 25

Common Methods

n Common Methods for All Reference Types

l ToString method

l Equals method

l GetType method

l Finalize method

The object type has a number of common methods that are inherited by all
other reference types.

Common Methods for All Reference Types
The object type provides a number of common methods. Because every
reference type inherits from object, every other reference type in C# has these
methods too. These common methods include the following:

n ToString

n Equals

n GetType

n Finalize

26 Module 8: Using Reference-Type Variables

ToString Method
The ToString method returns a string that represents the current object.

The default implementation, as found in the Object class, returns the type name
of the class. The following example uses the coordinate example class defined
earlier:

coordinate c = new coordinate();
Console.WriteLine(c.ToString());

This example will display “coordinate” on the console.

However, you c an override the ToString method in class coordinate to render
objects of that type into something more meaningful, such as a string containing
the values held in the object.

Equals Method
The Equals method determines whether the specified object is the same
instance as the current object. The default implementation of Equals supports
reference equality only, as you have already seen.

Subclasses can override this method to support value equality instead.

GetType Method
This method allows extraction of run-time type information from an object. It is
discussed in more detail in the Data Conversions section later in this module.

Finalize Method
This method is called by the run-time system when memory allocated to a
reference is released.

 Module 8: Using Reference-Type Variables 27

Reflection

n You Can Query the Type of an Object

n System.Reflection Namespace

n The typeof Operator Returns a Type Object

l Compile-time classes only

n GetType Method in System.reflection

l Run-time class information

You can obtain information about the type of an object by using a mechanism
called reflection.

The reflection mechanism in C# is handled by the System.Reflection
namespace in the .NET Framework. This namespace contains classes and
interfaces that provide a view of types, methods, and fields.

The System.Type class provides methods for obtaining information about a
type declaration, such as the constructors, methods, fields, properties, and
events of a class. A Type object that represents a type is unique; that is, two
Type object references refer to the same object only if they represent the same
type. This allows comparison of Type objects through reference comparisons
(the == and != operators).

28 Module 8: Using Reference-Type Variables

The typeof Operator
At compile time, you can use the typeof operator to return the type information
from a given type name.

The following example retrieves run-time type information for the type byte,
and displays the type name to the console.

using System;
using System.Reflection;
Type t = typeof(byte);
Console.WriteLine("Type: {0}", t);

The following example displays more detailed information about a class.
Specifically, it lists the methods for that class.

using System;
using System.Reflection;
Type t = typeof(string); // Get type information
MethodInfo[] mi = t.GetMethods();
foreach (MethodInfo m in mi) {
 Console.WriteLine("Method: {0}", m);
}

GetType Method
The typeof operator only works on classes that exist at compile time. If you
need type information at run time, you can use the GetType method of the
Object class.

For more information about reflection, search for “System.Reflection” in
the .NET Framework SDK Help documents.

 Module 8: Using Reference-Type Variables 29

u Namespaces in the .NET Framework

n System.IO Namespace

n System.XML Namespace

n System.Data Namespace

n Other Useful Namespaces

The .NET Framework provides common language services to a variety of
application development tools. The classes in the framework provide an
interface to the Common Language Runtime, the operating system, and the
network.

In this section, you will learn how to use some of the common namespaces
within the framework. You are likely to use these namespaces on a regular basis,
so it is important to be familiar with them.

The .NET Framework is large and powerful, and full coverage of every feature
is beyond the scope of this course. For more detailed information, please
consult the Visual Studio.NET and .NET Framework SDK Help documents.

30 Module 8: Using Reference-Type Variables

System.IO Namespace

n Access to File System Input/Output

l File, Directory

l StreamReader, StreamWriter

l FileStream

l BinaryReader, BinaryWriter

The System.IO namespace is important because it contains many classes that
allow an application to perform input and output (I/O) operations in various
ways through the file system.

The System.IO namespace also provides classes that allow an application to
perform input and output operations on files and directories.

The System.IO namespace is large and cannot be explained in detail here.
However, the following list gives an indication of the facilities available:

n The File and Directory classes allow an application to create, delete, and
manipulate directories and files.

n The StreamReader and StreamWriter classes enable a program to access
file contents as a stream of bytes or characters.

n The FileStream class can be used to provide random access to files.

n The BinaryReader and BinaryWriter classes provide a way to save and
load objects to and from streams.

 Module 8: Using Reference-Type Variables 31

System.IO Example
A brief example follows, to show how a file can be opened and read as a stream.
The example is not meant to illustrate all of the possible ways in which the
System.IO namespace can be used, but does show how you can perform a
simple file copy operation.

using System;
using System.IO; // Use IO namespace
// ...
StreamReader reader = new StreamReader("infile.txt");
 // Text in from file
StreamWriter writer = new StreamWriter("outfile.txt");
 // Text out to file
string line;
while ((line = reader.ReadLine()) != null)
{
 writer.WriteLine(line);
}

reader.Close();
writer.Close();

To open a file for reading, the code in the example creates a new
StreamReader object and passes the name of the file that needs to be opened
in the constructor. Similarly, to open a file for writing, the example creates a
new StreamWriter object and passes the output file name in its constructor. In
the example, the file names are hard-coded, but they could also be string
variables.

The example program copies a file by reading one line at a time from the input
stream and writing that line to the output stream.

ReadLine and WriteLine might look familiar. The Console class has two
static methods of that name. In the example, the methods are instance methods
of the StreamReader and StreamWriter classes, respectively.

For more information about the System.IO namespace, search for “System.IO
namespace” in the .NET Framework SDK Help documents.

32 Module 8: Using Reference-Type Variables

System.XML Namespace

n XML Support

n Various XML-Related Standards

Applications that need to interact with Extensible Markup Language (XML)
can use the System.XML namespace, which provides standards-based support
for processing XML.

The System.XML namespace supports a number of XML-related standards,
including the following:

n XML 1.0 with document type definition (DTD) support

n XML namespaces

n XML schemas

n XPath expressions

n XSL/T transformations

n DOM Level 2 core

n Simple Object Access Protocol (SOAP) 1.1

The XMLDocument class is used to represent an entire XML document.
Elements and attributes in an XML document are represented in the
XMLElement and XMLAttribute classes.

A detailed discussion of XML namespaces is beyond the scope of this course.
For further information, search for “System.XML namespace” in the .NET
Framework SDK Help documents.

 Module 8: Using Reference-Type Variables 33

System.Data Namespace

n System.Data.SQL

l SQL Server specific

n System.Data.ADO

l Interact with OLEDB and ODBC

l Generic database drivers

The System.Data namespace contains classes that constitute the ADO.NET
architecture. The ADO.NET architecture enables you to build components that
efficiently manage data from multiple data sources. ADO.NET provides the
tools to request, update, and reconcile data in n-tier systems.

Within ADO.NET, you can use the DataSet class. In each DataSet, there are
DataTable objects, and each DataTable contains data from a single data
source, such as Microsoft SQL Server™ .

The System.Data.SQL namespace provides direct access to SQL Server. Note
that this namespace is specific to SQL Server.

For access to other relational databases and sources of structured data, there is
the System.Data.ADO namespace, which provides high-level access to the
OLEDB and Open Database Connectivity (ODBC) database drivers.

A detailed discussion of the System namespaces is not within the scope of this
course. For further information, search for “System.Data namespace” in
the .NET Framework SDK Help documents.

34 Module 8: Using Reference-Type Variables

Other Useful Namespaces

n System Namespace

n System.Net Namespace

n System.Net.Sockets Namespace

n System.Windows.Forms Namespace

There are many other useful namespaces and classes in the .NET Framework.
This course does not discuss them all at length, but the following information
might be helpful when you search the reference files and documentation:

n The System namespace contains classes that define commonly used value
and reference data types, events and event handlers, interfaces, attributes,
and processing exceptions. Other classes provide services that support data
type conversion, method parameter manipulation, mathematics, remote and
local program invocation, and application management.

n The System.Net namespace provides a simple programming interface to
many of the protocols found on the network today. The System.Net.Sockets
namespace provides an implementation of the Microsoft Windows® Sockets
interface for developers who need to low-level access to Transmission
Control Protocol/Internet Protocol (TCP/IP) network facilities.

n System.WinForms is the graphical user interface (GUI) framework for
Windows applications, and provides support for forms, controls, and event
handlers.

For more information about System namespaces, search for “System
namespace” in the .NET Framework SDK Help documents.

 Module 8: Using Reference-Type Variables 35

Lab 8.1: Defining And Using Reference-Type Variables

Objectives
After completing this lab, you will be able to:

n Create reference variables and pass them as method parameters.

n Use the system frameworks.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Creating and using classes

n Calling methods and passing parameters

n Using arrays

Estimated time to complete this lab: 45 minutes

36 Module 8: Using Reference-Type Variables

Exercise 1
Adding an Instance Method with Two Parameters

In Lab 7, you developed a BankAccount class.

In this exercise, you will re-use this class and add a new instance method, called
TransferFrom, which transfers money from a specified account into this one.
If you did not complete Lab 7, you can obtain a copy of the BankAccount class
in the install folder\Labs\Lab08\Starter folder.

å To create the TransferFrom method

1. Open the Bank.sln project in the install folder\Labs\Lab08\Starter\Bank
folder.

2. Edit the BankAccount class as follows:

a. Create a public instance method called TransferFrom in the
BankAccount class.

b. The first parameter is a reference to another BankAccount object, called
accFrom, from which the money is to be transferred.

c. The second parameter is a decimal value, c alled amount, passed by
value and indicating the amount to transfer.

d. The method has no return value.

3. In the body of TransferFrom, add two statements that perform the
following tasks:

a. Debit amount from the balance of accFrom (by using Withdraw).

b. Test to ensure that the withdrawal was successful. If it was, credit
amount to the balance of the current account (by using Deposit).

The BankAccount class should be as follows:

class BankAccount
{

 ... additional code omitted for clarity ...

 public void TransferFrom(BankAccount accFrom, decimal
Êamount)
 {
 if (accFrom.Withdraw(amount))
 this.Deposit(amount);
 }

}

4. Save and compile your code. Correct any errors.

 Module 8: Using Reference-Type Variables 37

å To test the TransferFrom method

1. Open the Test class. This is the test harness.

2. In the Main method, add code to create two BankAccount objects, each
having an initial balance of $100. (Use the Populate method.)

3. Add code to display the type, account number, and current balance of each
account.

4. Add code to call TransferFrom and move $10 from one account to the
other.

5. Add code to display the current balances after the transfer.

The Test class could be as follows:

static void Main()
{
 BankAccount b1 = new BankAccount();
 b1.Populate(100);

 BankAccount b2 = new BankAccount();
 b2.Populate(100);

 Console.WriteLine("Before transfer");
 Console.WriteLine("{0} {1} {2}",
 b1.Type(), b1.Number(), b1.Balance());
 Console.WriteLine("{0} {1} {2}",
 b2.Type(), b2.Number(), b2.Balance());

 b1.TransferFrom(b2, 10);

 Console.WriteLine("After transfer");
 Console.WriteLine("{0} {1} {2}",
 b1.Type(), b1.Number(), b1.Balance());
 Console.WriteLine("{0} {1} {2}",
 b2.Type(), b2.Number(), b2.Balance());
}

6. Save your work.

7. Compile the project and correct any errors. Run and test the program.

38 Module 8: Using Reference-Type Variables

Exercise 2
Reversing a String

In Module 5, you developed a Utils class that contained a variety of utility
methods.

In this exercise, you will add a new static method called Reverse to the Utils
class. This method takes a string and returns a new string with the characters in
reverse order.

å To create the Reverse method

1. Open the Utils.sln project in the install folder\Labs\Lab08\Starter\Utils
folder.

2. Add a public static method called Reverse to the Utils class, as follows:

a. It has a single parameter called s that is a reference to a string.

b. The method has a void return type.

3. In the Reverse method, create a string variable called sRev to hold the
returned string result. Initialize this string to "".

4. To create a reversed string:

a. Write a loop extracting one character at a time from s. Start at the end
(use the Length property), and work backwards to the start of the string.
You can use array notation ([]) to examine an individual character in a
string.

The last character in a string is at position Length – 1. The first
character is at position 0.

b. Append this character to the end of sRev.

Tip

 Module 8: Using Reference-Type Variables 39

The Utils class might contain the following:

class Utils
{

... additional methods omitted for clarity ...

 //
 // Reverse a string
 //

 public static void Reverse(ref string s)
 {
 int k;
 string sRev = "";

 for (k = s.Length – 1; k >= 0 ; k--)
 sRev = sRev + s[k];

 // Return result to caller
 s = sRev;
 }
}

å To test the Reverse method

1. Edit the Test class. This class contains the test harness.

2. In the Main method, create a string variable.

3. Read a value into the string variable by using Console.ReadLine.

4. Pass the string into Reverse. Do not forget the ref keyword.

5. Display the value returned by Reverse.

The Test class might contain the following:

static void Main()
{
 string message;

 // Get an input string
 Console.WriteLine("Enter string to reverse:");
 message = Console.ReadLine();

 // Reverse the string
 Utils.Reverse(ref message);

 // Display the result
 Console.WriteLine(message);
}

6. Save your work.

7. Compile the project and correct any errors. Run and test the program.

40 Module 8: Using Reference-Type Variables

Exercise 3
Making an Uppercase Copy of a File

In this exercise, you will write a program that prompts the user for the name of
a text file. The program will check that the file exists, displaying a message and
quitting if it does not. The file will be opened and copied to another file (prompt
the user for the file name), but with every character converted to uppercase.

Before you start, you might want to look briefly at the documentation for
System.IO in the .NET Framework SDK Help documents. In particular, look at
the documentation for the StreamReader and StreamWriter classes.

å To create the file -copying application

1. Open the CopyFileUpper.sln project in the install folder\
Labs\Lab08\Starter\CopyFileUpper folder.

2. Edit the CopyFileUpper class and add a using statement for the System.IO
namespace.

3. In the Main method, declare two string variables called sFrom and sTo to
hold the input and output file names.

4. Declare a variable of type StreamReader called srFrom. This variable will
hold the reference to the input file.

5. Declare a variable of type StreamWriter called swTo. This variable will
hold the reference to the output stream.

6. Prompt for the name of the input file, read the name, and store it in the
string variable sFrom.

7. Prompt for the name of the output file, read the name, and store it in the
string variable sTo.

8. The I/O operations that you will use can raise exceptions, so begin a try-
catch block that can catch FileNotFoundException (for non-existent files)
and Exception (for any other exceptions). Print out a meaningful message
for each exception.

9. In the try-catch block, create a new StreamReader object using the input
file name in sFrom, and store it in the StreamReader reference variable
srFrom.

10. Similarly, create a new StreamWriter object using the input file name in
sTo, and store it in the StreamWriter reference variable swTo.

11. Add a while loop that loops if the Peek method of the input stream does not
return -1. Within the loop:

a. Use the ReadLine method on the input stream to read the next line of
input into a string variable called sBuffer.

b. Perform the ToUpper method on sBuffer.

c. Use the WriteLine method to send sBuffer to the output stream.

12. After the loop has finished, close the input and output streams.

 Module 8: Using Reference-Type Variables 41

13. The CopyFileUpper.cs file should be as follows:

using System;
using System.IO;

class CopyFileUpper
{
 static void Main()
 {
 string sFrom, sTo;
 StreamReader srFrom;
 StreamWriter swTo;

 // Prompt for input file name
 Console.Write("Copy from:");
 sFrom = Console.ReadLine();

 // Prompt for output file name
 Console.Write("Copy to:");
 sTo = Console.ReadLine();

 Console.WriteLine("Copy from {0} to {1}", sFrom,
 ÊsTo);

 try
 {
 srFrom = new StreamReader(sFrom);
 swTo = new StreamWriter(sTo);

 while (srFrom.Peek()!=-1)
 {
 string sBuffer = srFrom.ReadLine();
 sBuffer = sBuffer.ToUpper();
 swTo.WriteLine(sBuffer);
 }
 swTo.Close();
 srFrom.Close();

 }
 catch (FileNotFoundException)
 {
 Console.WriteLine("Input file not found");
 }
 catch (Exception e)
 {
 Console.WriteLine("Unexpected exception");
 Console.WriteLine(e.ToString());
 }
 }
}

14. Save your work. Compile the project and correct any errors.

42 Module 8: Using Reference-Type Variables

å To test the program

1. Open a Command window and go to the install folder\
Labs\Lab08\Starter\CopyFileUpper \bin\debug folder.

2. Execute CopyFileUpper .

3. When prompted, specify a source file name of
drive:\path\CopyFileUpper.cs

(This is the source file you have just created.)

4. Specify a destination file of Test.cs

5. When the program is finished, use a text editor to examine the Test.cs file. It
should contain a copy of your source code in all uppercase letters.

 Module 8: Using Reference-Type Variables 43

u Data Conversions

n Converting Value Types

n Parent/Child Conversions

n The is Operator

n The as Operator

n Conversions and the object Type

n Conversions and Interfaces

n Boxing and Unboxing

This section explains how to perform data conversions between reference types
in C#. You can convert references from one type to another, but the reference
types must be related.

In this section, you will learn about:

n Permitted and prohibited conversions between reference types.

n Conversion mechanisms (casts, is, and as).

n Special considerations for conversion to and from the object type.

n The reflection mechanism, which allows examination of run-time type
information.

n Automatic conversions (boxing and unboxing) between value types and
reference types.

44 Module 8: Using Reference-Type Variables

Converting Value Types

n Implicit Conversions

n Explicit Conversions

l Cast operator

n Exceptions

n System.Convert Class

l Handles the conversions internally

C# supports implicit and explicit data conversions.

Implicit Conversions
For value types, you have learned about two ways to convert data: implicit
conversion and explicit conversion using the cast operator.

Implicit conversion occurs when a value of one type is assigned to another type.
C# only allows implicit conversion for certain combinations of types, typically
when the first value can be converted to the second without any data loss. The
following example shows how data is converted implicitly from int to long:

int a = 4;
long b;
b = a; // Implicit conversion of int to long

Explicit Conversions
You can explicitly convert value types by using the cast operator, as shown:

int a;
long b = 7;
a = (int) b;

 Module 8: Using Reference-Type Variables 45

Exceptions
When you use the cast operator, you should be aware that problems might occur
if the value cannot be held in the target variable. If a problem is detected during
an explicit conversion (such as trying to fit the value 9,999,999,999 into an int
variable), C# might raise an exception (in this case, the OverflowException). If
you want, you can catch this exception by using try and catch, as shown:

try {
 a = checked((int) b);
}
catch (Exception) {
 Console.WriteLine("Problem in cast");
}

For operations that involve integers, use the checked keyword or compile with
the appropriate compiler settings, otherwise checking will not be performed.

System.Convert Class
Conversions between the different base types (such as int, long, and bool) are
handled within the .NET Framework by the System.Convert class.

You do not usually need to make calls to methods of System.Convert. The
compiler handles these calls automatically.

46 Module 8: Using Reference-Type Variables

Parent/Child Conversions

n Conversion to Parent Class Reference

l Implicit or explicit

l Always succeeds

l Can always assign to object

n Conversion to Child Class Reference

l Explicit casting required

l Will check that the reference is of the correct type

l Will raise InvalidCastException if not

You can convert a reference to an object of a child class to an object of its
parent class, and vice versa, under certain conditions.

Conversion to Parent Class Reference
References to objects of one class type can be converted into references to
another type if one class inherits from the other, either directly or indirectly.

A reference to an object can always be converted to a reference to a parent class
object. This conversion can be performed implicitly (by assignment or as part
of an expression) or explicitly (by using the cast operator).

The following examples will use two classes: Animal and Bird. Animal is the
parent class of Bird, or, to put it another way, Bird inherits from Animal.

The following example declares a variable of type Animal and a variable of
type Bird:

Animal a;
Bird b;

Now consider the following assignment, in which the reference in b is copied to
a:

a = b;

The Bird class inherits from the Animal class. Therefore, a method that is
found in Animal is also found in Bird. (The Bird class might have overridden
some of the methods of Animal to create its own version of them, but an
implementation of the method will exist nonetheless.) Therefore, it is possible
for references to Bird objects to be assigned to variables containing references
to values of type Animal.

 Module 8: Using Reference-Type Variables 47

In this case, C# performs a type conversion from Bird to Animal. You can
explicitly convert Bird to Animal by using a cast operator, as shown:

a = (Animal) b;

The preceding code will produce exactly the same result.

Conversion to Child Class Reference
You can convert a reference to a child type, but you must explicitly specify the
conversion by using a cast. An explicit conversion is subject to run-time
checking to ensure that the types are compatible, as shown in the following
example:

Bird b = (Bird) a; // Okay

This code will compile successfully. At run time, the cast operator performs a
check to determine whether the value in the variable really is of type Bird. If it
is not, the run-time InvalidCastException is raised.

If you attempt to assign to a child type without a conversion operator, as in the
following code, the compiler will display an error message stating, “Cannot
convert implicitly type ‘Animal’ to type ‘Bird.’”

b = a; // Will not compile

You can trap a type conversion error by using try and catch, just like any other
exception, as shown in the following code:

try {
 b = (Bird) a;
}
catch (InvalidCastException) {
 Console.WriteLine("Not a bird");
}

48 Module 8: Using Reference-Type Variables

The is Operator

n Returns true If a Conversion Can Be Made

Bird b;
if (a is Bird)

b = (Bird) a; // Safe
else

Console.WriteLine("Not a Bird");

Bird b;
if (a is Bird)

b = (Bird) a; // Safe
else

Console.WriteLine("Not a Bird");

You can handle incompatible types by catching InvalidCastException, but
there are other ways of handling this problem, such as the is operator.

You can use the is operator to test the type of the object without performing a
conversion. The is operator returns true if the value on the left is not null and a
cast to the class on the right, if performed, would complete without throwing an
exception. Otherwise, is returns false.

if (a is Bird)
 b = (Bird) a; // Safe, because "a is Bird" returns true
else
 Console.WriteLine("Not a Bird");

You can think of the relationship between inherited classes as an “is a kind of”
relationship, as in “A bird is a kind of animal.” References in the variable a
must be references to Animal objects, and b is a kind of animal. Of course, b is
a bird as well, but a bird is just a special case of an animal. The converse is not
true. An animal is not a type of bird. Some animals are birds, but it is not true
that all animals are birds.

So the following expression can be read as “If a is a kind of bird,” or “If a is a
bird or a type derived from bird.”

if (a is bird)

 Module 8: Using Reference-Type Variables 49

The as Operator

n Converts Between Reference Types, Like Cast

n On Error

l Returns null

l Does not raise an exception

Bird b = a as Bird; // Convert

if (b == null)
Console.WriteLine("Not a bird");

Bird b = a as Bird; // Convert

if (b == null)
Console.WriteLine("Not a bird");

You can use the as operator to perform conversions between types.

Example
The following statement performs a conversion of the reference in a to a value
that references a class of type Bird, and the runtime automatically checks to
ensure that the conversion is acceptable.

b = a as Bird;

Error Handling
The as operator differs from the cast operator in the way it handles errors. If, in
the preceding example, the reference in variable a cannot be converted in a
reference to an object of class Bird, the value null is stored in b, and the
program continues. The as operator never raises an exception.

You can rewrite the previous code as follows to display an error message if the
conversion cannot be performed:

Bird b = a as Bird;
if (b == null)
 Console.WriteLine("Not a bird");

Although as never raises an exception, any attempt to access through the
converted value will raise a NullReferenceException if it is null. Therefore,
you should always chec k the return value from as.

50 Module 8: Using Reference-Type Variables

Conversions and the object Type

n The object Type Is the Base for All Classes

n Any Reference Can Be Assigned to object

n Any object Variable Can Be Assigned to Any Reference

l With appropriate type conversion and checks

n The object Type and is

object ox;
ox = a;
ox = (object) a;
ox = a as object;

object ox;
ox = a;
ox = (object) a;
ox = a as object;

b = (Bird) ox;
b = ox as Bird;
b = (Bird) ox;
b = ox as Bird;

All reference types are based on the object type. This means that any reference
can be stored in a variable of type object.

The object Type Is the Base for All Classes
The object type is the base for all reference types.

Any Reference Can Be Assigned to object
Because all classes are based directly or indirectly on the object type, you can
assign any reference to a variable of type object, either with an implicit
conversion or with a cast. The following code provides an example:

object ox;
ox = a;
ox = (object) a;
ox = a as object;

Any object Variable Can Be Assigned to Any Reference
You can assign a value of type object to any other object reference, if you cast
it correctly. Remember that the run-time system will perform a check to ensure
that the value being assigned is of the correct type. The following code provides
an example:

b = (Bird) ox;
b = ox as Bird;

 Module 8: Using Reference-Type Variables 51

The preceding examples can be written with full error checking as follows:

try {
 b = (Bird) ox;
}
catch (InvalidCastException) {
 Console.WriteLine("Cannot convert to Bird");
}
b = ox as Bird;
if (b == null)
 Console.WriteLine("Cannot convert to Bird");

The object Type and is
Because every value is derived ultimately from object, checking a value with
the is operator to see if it is an object will always return true.

if (a is object) // Always returns true

52 Module 8: Using Reference-Type Variables

Conversion and Interfaces

n An Interface Can Only Be Used to Access Its Own
Members

n Other Methods and Variables of the Class Are Not
Accessible Through the Interface

You can perform conversions by using the casting operators, as and is, when
working with interfaces.

For example, you can declare a variable of an interface type, as shown:

IHashCodeProvider hcp;

Converting a Reference to an Interface
You can use the cast operator to convert the object reference into a reference to
a given interface, as shown:

IHashCodeProvider hcp;
hcp = (IHashCodeProvider) x;

As with conversion between class references, the cast operator will raise an
InvalidCastException if the object provided does not implement the interface.
You should determine whether an object supports an interface before casting
the object, or use try and catch to trap the exception.

Determining Whether an Interface Is Implemented
You can use the is operator to determine whether an object supports an
interface. The syntax is the same as the syntax used for classes:

if (x is IHashCodeProvider) ...

 Module 8: Using Reference-Type Variables 53

Using the as Operator
You can also use the as operator as an alternative to casting, as shown:

IHashCodeProvider hcp;
hcp = x as IHashCodeProvider;

As with conversion between classes, if the reference that is being converted
does not support the interface, the as operator returns null.

After you have converted a reference to a class into a reference to an interface,
the new reference can only access members of that interface, and cannot access
the other public members of the class.

Example
Consider the following example to learn how converting references to
interfaces works. Suppose you have created an interface called IVisual that
specifies a method called Paint, as follows:

interface IVisual
{
 void Paint();
}

Suppose that you also have a Rectangle class that implements the IVisual
interface. It implements the Paint method, but it can also define its own
methods. In this example, Rectangle has defined an additional method called
Move that is not part of IVisual.

You can create a Rectangle , r, and use its Move and Paint methods, as you
would expect. You can even reference it through an IVisual variable, v.
However, despite the fact that v and r both refer to the same object in memory,
you cannot call the Move method by using v because it is not part of the
IVisual interface. The following code provides examples:

Rectangle r = new Rectangle();
r.Move(); // Okay
r.Paint(); // Okay
IVisual v = (IVisual) r;
v.Move(); // Not valid
v.Paint(); // Okay

54 Module 8: Using Reference-Type Variables

Boxing and Unboxing

n Unified Type System

n Boxing

n Unboxing

n Calling Object Methods on Value Types

int p = 123;
object box;
box = p;

int p = 123;
object box;
box = p;

•• 123123

123123 p = (int)box;p = (int)box;

C# can convert value types into object references and object references into
value types.

Unified Type System
C# has a unified type system that allows value types to be converted to
references of type object and object references to be converted into value types.
Value types can be converted into references of type object, and vice versa.

Values of types like int and bool can therefore be handled as simple values most
of the time. This is normally the most efficient technique because there is none
of the overhead that is associated with references. However, when you want to
use these values as if they were references, they can be temporarily boxed for
you to do so.

Boxing
Expressions of value types can also be converted to values of type object , and
back again. When a variable of value type needs to be converted to object type,
an object box is allocated to hold the value and the value is copied into the box.
This process is known as boxing.

int p = 123;
object box;
box = p; // Boxing (implicit)
box = (object) p; // Boxing (explicit)

The boxing operation can be done implicitly, or explicitly with a cast to an
object. Boxing occurs most typically when a value type is passed to a parameter
of type object.

 Module 8: Using Reference-Type Variables 55

Unboxing
When a value in an object is converted back into a value type, the value is
copied out of the box and into the appropriate storage location. This process is
known as unboxing.

p = (int) box; // Unboxing

You must perform unboxing with an explicit cast operator.

If the value in the reference is not the exact type of the cast, the cast will raise
an InvalidCastException.

Calling Object Methods on Value Types
Because boxing can take place implicitly, you can call methods of the object
type on any variable or expression, even those having value types. The
following code provides an example:

static void Show(object o)
{
 Console.WriteLine(o.ToString());
}
Show(42);

This works because the value 42 is implicitly boxed into an object parameter,
and the ToString method of this parameter is then called.

It produces the same result as the following code:

object o = (object) 42; // Box
Console.WriteLine(o.ToString());

Boxing does not occur when you call Object methods directly on a value.
For example, the expression 42.ToString() does not box 42 into an object .
This is because the compiler can statically determine the type and discerns
which method to call.

Note

56 Module 8: Using Reference-Type Variables

Multimedia: Type-Safe Casting

 Module 8: Using Reference-Type Variables 57

Lab 8.2 Converting Data

Objectives
After completing this lab, you will be able to:

n Convert values of one reference type to another.

n Test whether a reference variable supports a given interface.

Prerequisites
Before working on this lab, you should be familiar with the following:

n Concepts of object-oriented programming

n Creating classes

n Defining methods

Estimated time to complete this lab: 30 minutes

58 Module 8: Using Reference-Type Variables

Exercise 1
Testing for the Implementation of an Interface

In this exercise, you will add a static method called IsItFormattable to the
Utils class that you created in Lab 5. If you did not complete that lab, you can
obtain a copy of the class in the install folder\Labs\Lab08\Starter folder.

The IsItFormattable method takes one parameter of type object and tests
whether that parameter implements the System.IFormattable interface. If the
object does have this interface, the method will return true. Otherwise, it will
return false.

A class implements the System.IFormattable interface to return a string
representation of an instance of that class. Base types such as int and ulong
implement this interface (after the value has been boxed). Many reference types,
for example string, do not. User-defined types can implement the interface if
the developer requires it. For more information about this interface, consult
the .NET Framework SDK Help documentation.

You will write test code that will call the Utils.IsItFormattable method with
arguments of different types and display the results on the screen.

å To create the IsItFormattable method

1. Open the InterfaceTest.sln project in the install folder\
Labs\Lab08\Starter\InterfaceTest folder.

2. Edit the Utils class as follows:

a. Create a public static method called IsItFormattable in the Utils class.

b. This method takes one parameter called x of type object that is passed
by value. The method returns a bool.

c. Use the is operator to determine whether the passed object s upports the
System.IFormattable interface. If it does, return true; otherwise return
false.

The completed method should be as follows:

using System;

...

class Utils
{
 public static bool IsItFormattable(object x)
 {
 // Use the is operator to test whether the
 // object has the IFormattable interface

 if (x is IFormattable)
 return true;
 else
 return false;

 }
}

 Module 8: Using Reference-Type Variables 59

å To test the IsItFormattable method

1. Edit the file Test class.

2. In the Main method, declare and initialize variables of types int, ulong, and
string.

3. Pass each variable to Utils.IsItFormattable(), and print the result from each
call.

4. The class Test might be as follows:

using System;
class Test
{
 static void Main()
 {
 int i=0;
 ulong ul=0;
 string s = "Test";

 Console.WriteLine("int: {0}",
ÊUtils.IsItFormattable(i));
 Console.WriteLine("ulong: {0}",
ÊUtils.IsItFormattable(ul));
 Console.WriteLine("String: {0}",
ÊUtils.IsItFormattable(s));
 }
}

5. Compile and test the code. You should see true for the int and ulong values,
and false for the string value.

60 Module 8: Using Reference-Type Variables

Exercise 2
Working with Interfaces

In this exercise, you will write a Display method that will use the as operator to
determine whether the object passed as a parameter supports a user-defined
interface called IPrintable and call a method of that interface if it is supported.

å To create the Display method

1. Open the TestDisplay.sln project in the install folder\
Labs\Lab08\Starter\TestDisplay folder.

The starter code includes the definition for an interface called IPrintable,
which contains a method called Print. A class that implements this interface
should use the Print method to display to the console the values held inside
the object. Also defined in the starter code files is a class called Coordinate
that implements the IPrintable interface.

A Coordinate object holds a pair of numbers that can define a position in
two-dimensional space. You do not need to understand how the Coordinate
class works (although you might want to look at it). All you need to know is
that it implements the IPrintable interface and that you can use the Print
method to display its contents.

2. Edit the Utils class as follows:

a. Add a public static void method called Display in the Utils class. This
method should take one parameter, an object passed by value, called
item.

b. In Display, declare an interface variable called ip of type IPrintable.

c. Convert the reference in the parameter item into a reference to the
IPrintable interface that uses the as operator. Store the result in ip.

d. If the value of ip is not null, use the IPrintable interface to call Print. If
it is null, the object does not support the interface. In this case, use
Console.WriteLine to display to results of the ToString method on the
parameter instead.

The completed method should be as follows:

public static void Display(object item)
{
 IPrintable ip;

 ip = (item as IPrintable);

 if (ip != null)
 ip.Print();
 else
 Console.WriteLine(item.ToString());
}

 Module 8: Using Reference-Type Variables 61

å To test the Display method

1. Within the Main method in the Test class, create a variable of type int, a
variable of type string, and a variable of type Coordinate. To initialize the
Coordinate variable, you can use the two-parameter constructor:

Coordinate c = new Coordinate(21.0, 68.0);

2. Pass these three variables, in turn, to Utils.Display to print them out.

3. The code should be as follows:

class Test
{
 static void Main()
 {
 int num = 65;
 string msg = "A String";
 Coordinate c = new Coordinate(21.0,68.0);

 Utils.Display(num);
 Utils.Display(msg);
 Utils.Display(c);
 }
}

4. Compile and test your application.

62 Module 8: Using Reference-Type Variables

If Time Permits
Testing the Method

If you want to try the IsItFormattable method that you created in Exercise 1
with a user -defined class, use the BankAccount class that you developed in a
previous lab.

Re-write the Display method from Exercise 2 by using the cast operator.
Remember to catch any InvalidCastException that C# might throw in response
to errors.

 Module 8: Using Reference-Type Variables 63

Review

n Using Reference-Type Variables

n Using Common Reference Types

n The Object Hierarchy

n Namespaces in the .NET Framework

n Data Conversions

1. Explain how a memory is allocated and de-allocated for a variable of
reference type.

2. What special value indicates that a reference variable does not contain a
reference to an object? What happens if you try to access a reference
variable with this value?

3. List the key features of the String class.

4. What type is the base type for all classes?

64 Module 8: Using Reference-Type Variables

5. Explain the difference between the cast operator and the as operator when
used to convert between class references.

6. List ways in which you can determine the type of an object.

THIS PAGE INTENTIONALLY LEFT BLANK

