

Contents

Overview 1

Using Constructors 2

Initializing Data 13

Lab 9.1: Creating Objects 31
Objects and Memory 39

Using Destructors 45

Lab 9.2: Destroying Objects 60
Review 65

Module 9: Creating and
Destroying Objects

This course is based on the prerelease Beta 1 version of Microsoft® Visual Studio .NET.
Content in the final release of the course may be different from the content included in
this prerelease version. All labs in the course are to be completed with the Beta 1
version of Visual Studio .NET.

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, BizTalk, IntelliSense, JScript, Microsoft Press, MSDNPowerPoint, Visual
Basic, Visual C++, Visual C#, Visual Studio, Windows, and Windows Media are either registered
trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 9: Creating and Destroying Objects 1

Overview

n Using Constructors

n Initializing Data

n Objects and Memory

n Using Destructors

In this module, you will learn what happens when an object is created, how to
use constructors to initialize objects, and how to use destructors to destroy
objects. You will also learn what happens when an object is destroyed and how
garbage collection reclaims memory.

After completing this module, you will be able to:

n Use constructors to initialize objects.

n Create overloaded constructors that can accept varying parameters.

n Describe the lifetime of an object and what happens when it is destroyed.

n Create destructors and use Finalize methods.

2 Module 9: Creating and Destroying Objects

u Using Constructors

n Creating Objects

n Using the Default Constructor

n Overriding the Default Constructor

n Overloading Constructors

Constructors are special methods that you use to initialize objects when you
create them. Even if you do not write a constructor yourself, a default
constructor is provided for you whenever you create an object from a reference
type. In this section, you will learn how to use constructors to control what
happens when an object is created.

 Module 9: Creating and Destroying Objects 3

Creating Objects

n Step 1: Allocating Memory

l Use new operator to allocate memory from the heap

n Step 2: Initializing the Object with a Constructor

l Use the name of the class followed by parentheses

Date when = new Date();Date when = new Date();

s

The process of creating an object in C# involves two steps:

1. Use the new keyword to acquire and allocate memory for the object.

2. Write a constructor to turn the memory acquired by new into an object.

Even though there are two steps in this process, you must perform both steps in
one line of code. For example, if Date is the name of a class, use the following
syntax to allocate memory and initialize the object when.

Date when = new Date();

Step 1: Allocating Memory
The first step in creating an object is to allocate memory for the object. All
objects are created by using the new operator. There are no exceptions to this
rule. You can do this explicitly in your code, or the compiler will do it for you.

In the following table, you can see examples of code and what they represent.

Code example Represents

string s = "Hello"; string s = new string("Hello");

int[] array = {1,2,3,4}; int[] array = new int[4]{1,2,3,4};

4 Module 9: Creating and Destroying Objects

How new Affects Performance
Generally, there are only two functions of new that affect performance:

n A Boolean test

The heap is a contiguous block of memory of known size. A special pointer
marks the current position in the heap for memory allocation purposes. All
memory to one side of the position has already been allocated by new. All
memory to the other side of the position is still available. The Boolean test
simply uses the difference between this position and the end of the heap to
determine how many bytes of free memory are left in the heap. It then
compares this amount to the number of bytes requested by new.

n A pointer increment

If there are enough free bytes left in the heap, the special pointer is
incremented by the number of bytes requested, thus marking the memory as
allocated. The address of the allocated block is then returned.

This makes the dynamic allocation of heap memory essentially as fast as the
dynamic allocation of stack memory.

Strictly speaking, this is only true if there is only one variable. If there
are multiple variables, the stack-based variables will be allocated all at once,
but the heap variables will require multiple allocations.

Step 2: Initializing the Object with a Constructor
The second step in creating an object is to write a constructor. A constructor
turns the memory allocated by new into an object. There are two types of
constructors: instance constructors and static constructors. Instance constructors
are constructors that initialize objects. Static constructors are constructors that
initialize classes.

How new and Instance Constructors Collaborate
It is important to realize how closely new and instance constructors collaborate
to create objects. The only purpose of new is to acquire raw uninitialized
memory. The only purpose of an instance constructor is to initialize the
memory and convert it into an object that is ready to use. Specifically, new is
not involved with initialization in any way, and instance constructors are not
involved in acquiring memory in any way.

Although new and instance constructors perform separate tasks, as a
programmer you cannot use them separately. This is one way for C# to help
guarantee that memory is always definitely set to a valid value before it is read.
(This is called definite assignment.)

In C++, you can allocate memory and not initialize
it (by directly calling operator new). You can also initialize memory allocated
previously (by using placement new). This separation is not possible in C#.

Note

Note to C++ Programmers

 Module 9: Creating and Destroying Objects 5

Using the Default Constructor

n Features of a Default Constructor

l Public accessibility

l Same name as the class

l No return type— not even void

l Expects no arguments

l Initializes all fields to zero, false or null

n Constructor Syntax

class Date { public Date() { ... } }class Date { public Date() { ... } }

When you create an object, the C# compiler provides a default constructor if
you do not write one yourself. Consider the following example:

class Date
{
 private int ccyy, mm, dd;
}

class Test
{
 static void Main()
 {
 Date when = new Date();
 ...
 }
}

The statement inside Test.Main creates a Date object called when by using
new (which allocates memory from the heap) and by calling a special method
that has the same name as the class (the instance constructor). However, the
Date class does not declare an instance constructor. (It does not declare any
methods at all.) By default, the compiler automatically generates a default
instance constructor.

6 Module 9: Creating and Destroying Objects

Features of a Default Constructor
Conceptually, the instance constructor that the compiler generates for the Date
class looks like the following example:

class Date
{
 public Date()
 {
 ccyy = 0;
 mm = 0;
 dd = 0;
 }
 private int ccyy, mm, dd;
}

The constructor has the following features:

n Same name as the class name

By definition, an instance constructor is a method that has the same name as
its class. This is a natural and intuitive definition and matches the syntax
that you have already seen. Following is an example:

Date when = new Date();

n No return type

This is the second defining characteristic of a constructor. A constructor
never has a return type— not even void.

n No arguments required

It is possible to declare constructors that take arguments. However, the
default constructor generated by the compiler expects no arguments.

n All fields initialized to zero

This is important. The compiler-generated default constructor implicitly
initializes all non-static fields as follows:

• Numeric fields (such as int, double, and decimal) are initialized to zero.

• Fields of type bool are initialized to false.

• Reference types (covered in an earlier module) are initialized to null.

• Fields of type struct are initialized to contain zero values in all their
elements.

n Public accessibility

This allows new instances of the object to be created.

In Module 10, “Inheritance in C#,” in Course 2124A, Introduction to C#
Programming for the Microsoft .NET Platform (Prerelease), you will learn
about abstract classes. The compiler-generated default constructor for an
abstract class has protected access.

Note

 Module 9: Creating and Destroying Objects 7

Overriding the Default Constructor

n The Default Constructor Might Be Inappropriate

l If so, do not use it; write your own!

class Date
{

public Date()
{

ccyy = 1970;
mm = 1;
dd = 1;

}
private int ccyy, mm, dd;

}

class Date
{

public Date()
{

ccyy = 1970;
mm = 1;
dd = 1;

}
private int ccyy, mm, dd;

}

Sometimes it is not appropriate for you to use the compiler-generated default
constructor. In these cases, you can write your own constructor that contains
only the code to initialize fields to non-zero values. Any fields that you do not
initialize in your constructor will retain their default initialization of zero.

What If the Default Constructor Is Inappropriate?
There are several cases in which the compiler-generated default constructor
may be inappropriate:

n Public access is sometimes inappropriate.

The Factory Method pattern uses a non-public constructor. (The Factory
Method pattern is discussed in Design Patterns: Elements of Reusable
Object-Oriented Software, by E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. It is covered in a later module.)

Procedural functions (such as Cos and Sin) often use private constructors.

The Singleton pattern typically uses a private constructor. (The Singleton
pattern is also covered in Design Patterns: Elements of Reusable Object-
Oriented Software and in a later topic in this section.)

n Zero initialization is sometimes inappropriate.

Consider the compiler-generated default constructor for the following Date
class:

class Date
{
 private int ccyy, mm, dd;
}

The default constructor will initialize the year field (ccyy) to zero, the month
field (mm) to zero, and the day field (dd) to zero. This might not be
appropriate if you want the date to default to a different value.

8 Module 9: Creating and Destroying Objects

n Invisible code is hard to maintain

You cannot see the default constructor code. This can occasionally be a
problem. For example, you cannot single -step through invisible code when
debugging. Additionally, if you choose to use the default initialization to
zero, how will developers who need to maintain the code know that this
choice was deliberate?

Writing Your Own Default Constructor
If the compiler-generated default constructor is inappropriate, you must write
your own default constructor. The C# language helps you to do this.

You can write a constructor that only contains the code to initialize fields to
non-zero values. All fields that are not initialized in your constructor retain their
default initialization to zero. The following code provides an example:

class DefaultInit
{
 public int a, b;
 public DefaultInit()
 {
 a = 42;
 // b retains default initialization to zero
 }
}
class Test
{
 static void Main()
 {
 DefaultInit di = new DefaultInit();
 Console.WriteLine(di.a); // Writes 42
 Console.WriteLine(di.b); // Writes zero
 }
}

You should be wary of doing more than simple initializations in your own
constructors. You must consider potential failure: the only sensible way you can
signal an initialization failure in a constructor is by throwing an exception.

The same is also true for operators. Operators are discus sed in Module 12,
“Operators, Delegates, and Events,” in Course 2124A, Introduction to C#
Programming for the Microsoft .NET Platform (Prerelease).

When initialization succeeds, you have an object that you can use. If
initialization fails, you do not have an object.

Note

 Module 9: Creating and Destroying Objects 9

Overloading Constructors

n Constructors Are Methods; They Can Be Overloaded

l Same scope, same name, different parameters

l Allows objects to be initialized in different ways

n WARNING

l If you write a constructor for a class, the compiler does
not create a default constructor

class Date
{

public Date() { ... }
public Date(int year, int month, int day) { ... }
...

}

class Date
{

public Date() { ... }
public Date(int year, int month, int day) { ... }
...

}

Constructors are special kinds of methods. Just as you can overload methods,
you can overload constructors.

What Is Overloading?
Overloading is the technical term for declaring two or more methods in the
same scope w ith the same name. The following code provides an example:

class Overload
{
 public void Method() { ... }
 public void Method(int x) { ... }
}
class Use
{
 static void Main()
 {
 Overload o = new Overload();
 o.Method();
 o.Method(42);
 }
}

In this code example, two methods called Method are declared in the scope of
the Overload class, and both are called in Use.Main. There is no ambiguity,
because the number and types of the arguments determine which method is
called.

10 Module 9: Creating and Destroying Objects

Initializing an Object in More Than One Way
The ability to initialize an object in different ways was one of the primary
motivations for allowing overloading. Constructors are special kinds of
methods, and they can be overloaded exactly like methods. This means you can
define different ways to initialize an object. The following code provides an
example:

class Overload
{
 private int data;
 public Overload() { this.data = -1; }
 public Overload(int x) { this.data = x; }
}

class Use
{
 static void Main()
 {
 Overload o1 = new Overload();
 Overload o2 = new Overload(42);
 ...
 }
}

Object o1 is created by using the constructor that takes no arguments, and the
private instance variable data is set to –1. Object o2 is created by using the
constructor that takes a single integer, and the instance variable data is set to 42.

Initializing Fields to Non-Default Values
You will find many cases in which fields cannot be sensibly initialized to zero.
In these cases, you can write your own constructor that requires one or more
parameters that are then used to initialize the fields. For example, consider the
following Date class:

class Date
{
 public Date(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}

One problem with this constructor is that it is easy to get the order of the
arguments wrong. For example:

Date birthday = new Date(23, 11, 1968); // Error

 Module 9: Creating and Destroying Objects 11

The code should read new Date(1968,11,23). This error will not be
detected as a compile-time error because all three arguments are integers. One
way you could fix this would be to use the Whole Value pattern. You could turn
Year, Month, and Day into structs rather than int values, as follows:

struct Year
{
 public readonly int value;
 public Year(int value) { this.value = value; }
}

struct Month // Or as an enum
{
 public readonly int value;
 public Month(int value) { this.value = value; }
}
struct Day
{
 public readonly int value;
 public Day(int value) { this.value = value; }
}
class Date
{
 public Date(Year y, Month m, Day d)
 {
 ccyy = y.value;
 mm = m.value;
 dd = d.value;
 }
 private int ccyy, mm, dd;
}

Using structs or enums rather than classes for Day, Month, and Year
reduces the overhead when creating a Date object. This will be explained later
in this module.

The following code shows a simple change that would not only catch argument-
order errors but would also allow you to create overloaded Date constructors
for U.K. format, U.S. format, and ISO format:

class Date
{
 public Date(Year y, Month m, Day d) { ... } // ISO
 public Date(Month m, Day d, Year y) { ... } // US
 public Date(Day d, Month m, Year y) { ... } // UK
 ...
 private int ccyy, mm, dd;
}

Tip

12 Module 9: Creating and Destroying Objects

Overloading and the Default Constructor
If you declare a class with a constructor, the compiler does not generate the
default constructor. In the following example, the Date class is declared with a
constructor, so the expression new Date() will not compile:

class Date
{
 public Date(Year y, Month m, Day d) { ... }
 // No other constructor
 private int ccyy, mm, dd;
}
class Fails
{
 static void Main()
 {
 Date defaulted = new Date(); // Compile-time error
 }
}

This means that if you want to be able to create Date objects without supplying
any constructor arguments, you will need to explicitly declare an overloaded
default constructor, as in the following example:

class Date
{
 public Date() { ... }
 public Date(Year y, Month m, Day d) { ... }
 ...
 private int ccyy, mm, dd;
}
class Succeeds
{
 static void Main()
 {
 Date defaulted = new Date(); // Okay
 }
}

 Module 9: Creating and Destroying Objects 13

u Initializing Data

n Using Initializer Lists

n Declaring Readonly Variables and Constants

n Initializing Readonly Fields

n Declaring a Constructor for a Struct

n Using Private Constructors

n Using Static Constructors

You have seen the basic elements of constructors. Constructors also have a
number of additional features and uses. In this section you will learn how to
initialize the data in objects by using constructors.

14 Module 9: Creating and Destroying Objects

Using Initializer Lists

n Overloaded Constructors Might Contain Duplicate Code

l Refactor by making constructors call each other

l Use the this keyword in an initializer list

class Date
{

...
public Date() : this(1970, 1, 1) { }
public Date(int year, int month, int day) { ... }

}

class Date
{

...
public Date() : this(1970, 1, 1) { }
public Date(int year, int month, int day) { ... }

}

You can use special syntax called an initializer list to implement one
constructor by calling an overloaded constructor.

Avoiding Duplicate Initia lizations
The following code shows an example of overloaded constructors with
duplicated initialization code:

class Date
{
 public Date()
 {
 ccyy = 1970;
 mm = 1;
 dd = 1;
 }
 public Date(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}

Notice the duplication of dd, mm, and ccyy on the left side of the three
initializations. This is not extensive duplication, but it is duplication nonetheless,
and you should avoid it if possible. For example, suppose you decided to
change the representation of a Date to one long field. You would need to
rewrite every Date constructor.

 Module 9: Creating and Destroying Objects 15

Refactoring Duplicate Initializations
A standard way to refactor duplic ate code is to extract the common code into its
own method. The following code provides an example:

class Date
{
 public Date()
 {
 Init(1970, 1, 1);
 }
 public Date(int year, int month, int day)
 {
 Init(day, month, year);
 }
 private void Init(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}

This is better than the previous solution. Now if you changed the representation
of a Date to one long field, you would only need to modify Init. Unfortunately,
refactoring constructors in this way works some of the time but not all of the
time. For example, it will not work if you try to refactor the initialization of a
readonly field. (This is covered later in this module.) Object-oriented
programming languages provide mechanisms to help solve this known problem.
For example, in C++ you can use default values. In C# you use initializer lists.

Using an Initializer List
An initializer list allows you to write a constructor that calls another constructor
in the same class. You write the initializer list between the closing parenthesis
mark and the opening left brace of the constructor. An initializer list starts with
a colon and is followed by the keyword this and then any arguments between
parentheses. For example, in the following code, the default Date constructor
(the one with no arguments) uses an initializer list to call the second Date
constructor with three arguments: 1970, 1, and 1.

class Date
{
 public Date() : this(1970, 1, 1)
 {
 }
 public Date(int year, int month, int day)
 {
 ccyy = year;
 mm = month;
 dd = day;
 }
 private int ccyy, mm, dd;
}
This syntax is efficient, it always works, and if you use it you do not need to
create an extra Init method.

16 Module 9: Creating and Destroying Objects

Initializer List Restrictions
There are three restrictions you must observe when initializing constructors:

n You can only use initializer lists in constructors as shown in the following
example:

class Point
{
 public Point(int x, int y) { ... }
 // Compile-time error
 public void Init() : this(0, 0) { }
}

n You cannot write an initializer list that calls itself. The following code
provides an example:

class Point
{
 // Compile-time error
 public Point(int x, int y) : this(x, y) { }
}

n You cannot use the this keyword in an expression to create a constructor
argument. The following code provides an example:

class Point
{
 // Compile-time error
 public Point() : this(X(this), Y(this)) { }
 public Point(int x, int y) { ... }
 private static int X(Point p) { ... }
 private static int Y(Point p) { ... }
}

 Module 9: Creating and Destroying Objects 17

Declaring Readonly Variables and Constants

nValue of Constant Field
Is Obtained at Compile
Time

nValue of Readonly
Field Is Obtained at
Run Time

When using constructors, you need to know how to declare readonly variables
and constants.

Using Readonly Variables
You can qualify a field as readonly in its declaration, as follows:

readonly int nLoopCount = 10;

You will get an error if you attempt to change the value at run time.

Using Constant Variables
A constant variable represents a constant value that is computed at compile time.
Using constant variables, you can define variables whose values never change,
as shown in the following example:

const int speedLimit = 55;

Constants can depend on other constants within the same program as long as
the dependencies are not of a circular nature. The compiler automatically
evaluates the constant declarations in the appropriate order.

18 Module 9: Creating and Destroying Objects

Initializing Readonly Fields

n Readonly Fields Must Be Initialized

l Implicitly to zero, false or null

l Explicitly at their declaration in a variable initializer

l Explicitly inside an instance constructor

class SourceFile
{

private readonly ArrayList lines;
}

class SourceFile
{

private readonly ArrayList lines;
}

Fields that cannot be reassigned and that must be initialized are called readonly
fields. There are three ways to initialize a readonly field:

n Use the default initialization of a readonly field.

n Initialize a readonly field in a constructor.

n Initialize readonly fields by using a variable initializer.

Using the Default Initialization of a Readonly Field
The compiler-generated default constructor will initialize all fields (whether
they are readonly or not) to their default value of zero, false, or null. The
following code provides an example:

class SourceFile
{
 public readonly ArrayList lines;
}
class Test
{
 static void Main()
 {
 SourceFile src = new SourceFile();
 Console.WriteLine(src.lines == null); // True
 }
}

There is no SourceFile constructor, so the compiler writes a default constructor
for you, which will initialize lines to null. Hence the WriteLine statement in
the preceding example writes "True.”

 Module 9: Creating and Destroying Objects 19

If you declare your own constructor in a class and do not explicitly initialize a
readonly field, the compiler will still automatically initialize the field.
Following is an example:

class SourceFile
{
 public SourceFile() { }
 public readonly ArrayList lines;
}
class Test
{
 static void Main()
 {
 SourceFile src = new SourceFile();
 Console.WriteLine(src.lines == null); // Still true
 }
}

This is not very useful. In this case, the readonly field is initialized to null, and
it will remain null because you cannot reassign a readonly field.

Initializing a Readonly Field in a Constructor
You can explicitly initialize a readonly field in the body of a constructor.
Following is an example:

class SourceFile
{
 public SourceFile()
 {
 lines = new ArrayList();
 }
 private readonly ArrayList lines;
}

The statement inside the constructor looks syntactically like an assignment to
lines, which would not normally be allowed because lines is a readonly field.
However, the statement compiles because the compiler recognizes that the
assignment occurs inside a constructor body and so treats it as an initialization.

An advantage of initializing readonly fields like this is that you can use
constructor parameters in the new expression. Following is an example:

class SourceFile
{
 public SourceFile(int suggestedSize)
 {
 lines = new ArrayList(suggestedSize);
 }
 private readonly ArrayList lines;
}

20 Module 9: Creating and Destroying Objects

Initializing Readonly Fields Using a Variable Initializer
You can initialize a readonly field directly at its declaration by using a variable
initializer. Following is an example:

class SourceFile
{
 public SourceFile()
 {
 ...
 }
 private readonly ArrayList lines = new ArrayList();
}

This is really just convenient shorthand. The compiler conceptually rewrites a
variable initialization (whether it is readonly or not) into an assignment inside
all constructors. For example, the preceding class will conceptually be
converted into the following class:

class SourceFile
{
 public SourceFile()
 {
 lines = new ArrayList();
 ...
 }
 private readonly ArrayList lines;
}

 Module 9: Creating and Destroying Objects 21

Declaring a Constructor for a Struct

n The Compiler

l Always generates a default constructor. Default
constructors automatically initialize all fields to zero.

n The Programmer

l Can declare constructors with one or more arguments.
Declared constructors do not automatically initialize
fields to zero.

l Can never declare a default constructor.

l Can never declare a protected constructor.

The syntax you use to declare a constructor is the same for a struct as it is for a
class. For example, the following is a struct called Point that has a constructor:

struct Point
{
 public Point(int x, int y) { ... }
 ...
}

Struct Constructor Restrictions
Although the syntax for struct and class constructors is the same, there are some
additional restrictions that apply to struct constructors:

n The compiler always creates a default struct constructor.

n You cannot declare a default constructor in a struct.

n You cannot declare a protected constructor in a struct.

n You must initialize all fields.

22 Module 9: Creating and Destroying Objects

The Compiler Always Creates a Default Struct Constructor
The compiler always generates a default constructor, regardless of whether you
declare constructors yourself. (This is unlike the situation with classes, in which
the compiler-generated default constructor is only generated if you do not
declare any constructors yourself.) The compiler generated struct constructor
initializes all fie lds to zero, false, or null.

struct SPoint
{
 public SPoint(int x, int y) { ... }
 ...
 static void Main()
 {
 // Okay
 SPoint p = new SPoint();
 }
}
class CPoint
{
 public CPoint(int x, int y) { ... }
 ...
 static void Main()
 {
 // Compile-time error
 CPoint p = new CPoint();
 }
}

This means that a struct value created with

SPoint p = new SPoint();

creates a new struct value on the stack (using new to create a struct does not
acquire memory from the heap) and initializes the fields to zero. There is no
way to change this behavior.

However, a struct value created with

SPoint p;

 Module 9: Creating and Destroying Objects 23

still creates a struct value on the stack but does not initialize any of the fields
(so any field must be definitely assigned before it can be referenced). Following
is an example:

struct SPoint
{
 public int x, y;
 ...
 static void Main()
 {
 SPoint p1;
 Console.WriteLine(p1.x); // Compile-time error
 SPoint p2;
 p2.x = 0;
 Console.WriteLine(p2.x); // Okay
 }
}

Ensure that any struct type that you define is valid with all fields set to
zero.

You Cannot Declare a Default Constructor in a Struct
The reason for this restriction is that the compiler always creates a default
constructor in a struct (as just described) so you would end up with a duplicate
definition.

class CPoint
{
 // Okay because CPoint is a class
 public CPoint() { ... }
 ...
}
struct SPoint
{
 // Compile-time error because SPoint is a struct
 public SPoint() { ... }
 ...
}

You can declare a struct constructor as long as it expects at least one argument.
If you declare a struct constructor it will not automatically initialize any field to
a default value (unlike the compiler generated struct default constructor which
will).

struct SPoint
{
 public SPoint(int x, int y) { ... }
 ...
}

Tip

24 Module 9: Creating and Destroying Objects

You Cannot Declare a Protected Constructor in a Struct
The reason for this restriction is that you can never derive other classes or
structs from a struct, and so protected access would not make sense, as shown
in the following example:

class CPoint
{
 // Okay
 protected CPoint(int x, int y) { ... }
}
struct SPoint
{
 // Compile-time error
 protected SPoint(int x, int y) { ... }
}

You Must Initialize All Fields
If you declare a class constructor that fails to initialize a field, the compiler will
ensure that the field nevertheless retains its default zero initialization. The
following code provides an example:

class CPoint
{
 private int x, y;
 public CPoint(int x, int y) { /*nothing*/ }
 // Okay. Compiler ensures that x and y are initialized to
 // zero.
}

However, if you declare a struct constructor that fails to initialize a field, the
compiler will generate a compile-time error:

struct SPoint1 // Okay: initialized when declared
{
 private int x = 0, y = 0;
 public SPoint1(int x, int y) { }
}
struct SPoint2 // Okay: initialized in constructor
{
 private int x, y;
 public SPoint2(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}
struct SPoint3 // Compile-time error
{
 private int x, y;
 public SPoint3(int x, int y) { }
}

 Module 9: Creating and Destroying Objects 25

Using Private Constructors

n A Private Constructor Prevents Unwanted Objects from
Being Created

l Instance methods cannot be called

l Static methods can be called

l A useful way of implementing procedural functions

public class Math
{

public static double Cos(double x) { ... }
public static double Sin(double x) { ... }
private Math() { }

}

public class Math
{

public static double Cos(double x) { ... }
public static double Sin(double x) { ... }
private Math() { }

}

Math is part of the .NET SDK

So far, you have learned how to use public constructors. C# also provides
private constructors, which are useful in some applications.

Using Private Constructors for Procedural Functions
Object-oriented programming offers a powerful paradigm for structuring
software in many diverse domains. However, it is not a universally applicable
paradigm. For example, there is nothing object oriented about calculating the
sine or cosine of a double-precision floating-point number.

Declaring Functions
The most intuitive way to calculate a sine or cosine is to use global functions
defined outside an object, as follows:

double Cos(double x) { ... }
double Sin(double x) { ... }

The preceding code is not allowable in C#. Global functions are possible in
procedural languages such as C and in hybrid languages such as C++, but they
are not allowed in C#. In C#, functions must be declared inside a class or struct,
as follows:

class Math
{
 public double Cos(double x) { ... }
 public double Sin(double x) { ... }
}

26 Module 9: Creating and Destroying Objects

Declaring Static vs. Instance Methods
The problem with the technique in the preceding example is that, because Cos
and Sin are instance methods, you are forced to create a Math object from
which to invoke Sin or Cos , as shown in the following code:

class Cumbersome
{
 static void Main()
 {
 Math m = new Math();
 double answer;
 answer = m.Cos(42.0);
 // Or
 answer = new Math().Cos(42.0);
 }
}

However, you can easily solve this by declaring Cos and Sin as static methods,
as follows:

class Math
{
 public static double Cos(double x) { ... }
 public static double Sin(double x) { ... }
}
class LessCumbersome
{
 static void Main()
 {
 double answer = Math.Cos(42.0);
 }
}

 Module 9: Creating and Destroying Objects 27

Benefits of Static Methods
If you declare Cos as a static method, the syntax for using Cos becomes:

n Simpler

You have only one way to call Cos (by means of Math), whereas in the
previous example you had two ways (by means of m and by means of new
Math()).

n Faster

You no longer need to create a new Math object.

One slight problem remains. The compiler will generate a default constructor
with public access, allowing you to create Math objects. Such objects can serve
no purpose because the Math class contains static methods only. There are two
ways you can prevent Math objects from being created:

n Declare Math as an abstract class.

This is not a good idea. The purpose of abstract classes is to be derived from.

n Declare a private Math constructor.

This is a better solution. When you declare a constructor in the Math class,
you prevent the compiler from generating the default constructor, and if you
also declare the constructor as private, you stop Math objects from being
created. The private constructor also prevents Math from being used as a
base class.

The Singleton Pattern
The intent of the Singleton pattern (which is discussed in Design Patterns:
Elements of Reusable Object-Oriented Software) is to “ensure a class only has
one instance, and provide a global point of access to it.” The technique of
declaring a class by using a private constructor and static methods is sometimes
suggested as a way to implement the Singleton pattern.

A key aspect of the Singleton pattern is that a class has a single instance.
With a private constructor and static methods, there is no instance at all. The
canonical implementation of the Singleton pattern is to create a static method
that gives access to the single instance, and this instance is then used to call
instance methods.

Note

28 Module 9: Creating and Destroying Objects

Using Static Constructors

n Purpose

l Called by the class loader at run time

l Can be used to initialize static fields

l Guaranteed to be called before instance constructor

n Restrictions

l Cannot be called

l Cannot have an access modifier

l Must be parameterless

Just as an instance constructor guarantees that an object is in a well-defined
initial state before it is used, a static constructor guarantees that a class is in a
well-defined initial state before it is used.

Loading Classes at Run Time
C# is a dynamic language. When the Common Language Runtime is running a
Microsoft® .NET program, it often encounters code that uses a class that has not
yet been loaded. In these situations, execution is momentarily suspended, the
class is dynamically loaded, and then execution continues.

Initializing Classes at Load Time
C# ensures that a class is always initialized before it is used in code in any way.
This guarantee is achieved by using static constructors.

You can declare a static constructor like an instance constructor but prefix it
with the keyword static, as follows:

class Example
{
 static Example() { ... }
}

 Module 9: Creating and Destroying Objects 29

After the class loader loads a class that will soon be used, but before it
continues normal execution, it executes the static constructor for that class.
Because of this process, you are guaranteed that classes are always initialized
before they are used. The specific guarantees that the class loader provides are
as follows:

n The static constructor for a class is executed before any instances of the
class are created.

n The static constructor for a class is executed before any static member of the
class is referenced.

n The static constructor for a class is executed before the static constructor of
any of its derived classes is executed.

n The static constructor for a class never executes more than once.

Static Field Initializations and Static Constructors
The most common use for a static constructor is to initialize the static fields of a
class. This is because when you initialize a static field directly at its point of
declaration, the compiler conceptually converts the initialization into an
assignment inside the static constructor. In other words

class Example
{
 private static Wibble w = new Wibble();
}

is effectively converted by the compiler into

class Example
{
 static Example()
 {
 w = new Wibble();
 }
 private static Wibble w;
}

Static Constructor Restrictions
Understanding the following four restrictions on the syntax of static
constructors will help you understand how the Common Language Runtime
uses static constructors:

n You cannot call a static constructor.

n You cannot declare a static constructor with an access modifier.

n You cannot declare a static constructor with parameters.

n You cannot use the this keyword in a static constructor.

30 Module 9: Creating and Destroying Objects

You Cannot Call a Static Constructor
A static constructor must be called before any instances of the class are
referenced in code. If the responsibility for enforcing this rule were given to
programmers rather than the .NET runtime, eventually programmers would fail
to meet the responsibility. They would forget to make the call, or, perhaps
worse, they would call the static constructor more than once. The .NET runtime
avoids these potential problems by disallowing calls to static constructors in
code. Only the .NET runtime can call a static constructor.

class Point
{
 static Point() { ... }
 static void Main()
 {
 Point.Point(); // Compile-time error
 }
}

You Cannot Declare a Static Constructor with an Access Modifier
Because you cannot call a static constructor, declaring a static constructor with
an access modifier does not make sense and causes a compile -time error:

class Point
{
 public static Point() { ... } // Compile-time error
}

You Cannot Declare a Static Constructor with Parameters
Because you cannot call a static constructor, declaring a static constructor with
parameters does not make sense and causes a compile-time error. This also
means that you cannot declare overloaded static constructors. Following is an
example:

class Point
{
 static Point(int x) { ... } // Compile-time error
}

You Cannot Use the this Keyword in a Static Constructor
Because a static constructor initializes the class and not object instances, it does
not have an implicit this reference, so any attempt to use the this keyword
results in a compile-time error:

class Point
{
 private int x, y;
 static Point() : this(0,0) // Compile-time error
 {
 this.x = 0; // Compile-time error
 this.y = 0; // Compile-time error
 }
 ...
}

 Module 9: Creating and Destroying Objects 31

Lab 9.1: Creating Objects

Objectives
In this lab, you will modify the BankAccount class that you created in the
previous labs so that it uses constructors. You will also create a new class,
BankTransaction, and use it to store information about the transactions
(deposits and withdrawals) performed on an account.

After completing this lab, you will be able to:

n Override the default constructor.

n Create overloaded constructors.

n Initialize readonly data.

Prerequisites
Before working on this lab, you must be able to:

n Create classes and instantiate objects.

n Define and call methods.

You should also have completed Lab 8. If you did not complete Lab 8, you can
use the solution code provided.

Estimated time to complete this lab: 60 minutes

32 Module 9: Creating and Destroying Objects

Exercise 1
Implementing Constructors

In this exercise, you will modify the BankAccount class that you created in the
previous labs. You will remove the methods that populate the account number
and account type instance variables and replace them with a series of
constructors that can be used when a BankAccount is instantiated.

You will overrid e the default constructor to generate an account number (by
using the technique that you used earlier), set the account type to Checking,
and set the balance to zero.

You will also create three more constructors that take different combinations of
parameters:

n The first will take an AccountType . The constructor will generate an
account number, set the balance to zero, and set the account type to the
value passed in.

n The second will take a decimal. The constructor will generate an account
number, set the account type to Checking, and set the balance to the value
passed in.

n The third will take an AccountType and a decimal. The constructor will
generate an account number, set the account type to the value of the
AccountType parameter, and set the balance to the value of the decimal
parameter.

å To create the default constructor

1. Open the Constructors.sln project in the Lab Files\
Lab09\Starter\Constructors folder.

2. In the BankAccount class, delete the Populate method.

3. Create a default constructor, as follows:

a. The name is BankAccount.

b. It is public.

c. It takes no parameters.

d. It has no return type.

e. The body of the constructor should generate an account number by using
the NextNumber method, set the account type to
AccountType.Checking, and initialize the account balance to zero.

The completed constructor is as follows:

public BankAccount()
{
 accNo = NextNumber();
 accType = AccountType.Checking;
 accBal = 0;
}

 Module 9: Creating and Destroying Objects 33

å To create the remaining constructors

1. Add another constructor that takes a single AccountType parameter called
aType . The constructor should:

a. Generate an account number as before.

b. Set accType to aType .

c. Set accBal to zero.

2. Define another constructor that takes a single decimal parameter called
aBal. The constructor should:

a. Generate an account number.

b. Set accType to AccountType.Checking.

c. Set accBal to aBal.

3. Define a final constructor that takes two parameters: an AccountType
called aType and a decimal called aBal. The constructor should:

a. Generate an account number.

b. Set accType to aType .

c. Set accBal to aBal.

The completed code for all three constructors is as follows:

public BankAccount(AccountType aType)
{
 accNo = NextNumber();
 accType = aType;
 accBal = 0;
}

public BankAccount(decimal aBal)
{
 accNo = NextNumber();
 accType = AccountType.Checking;
 accBal = aBal;
}

public BankAccount(AccountType aType, decimal aBal)
{
 accNo = NextNumber();
 accType = aType;
 accBal = aBal;
}

34 Module 9: Creating and Destroying Objects

å To test the constructors

1. In the Main method of the CreateAccount class, define four BankAccount
variables called acc1, acc2, acc3, and acc4.

2. Instantiate acc1 by using the default constructor.

3. Instantiate acc2 by using the constructor that takes only an AccountType .
Set the type of acc2 to AccountType.Deposit.

4. Instantiate acc3 by using the constructor that takes only a decimal balance.
Set the balance of acc3 to 100.

5. Instantiate acc4 by using the constructor that takes an AccountType and a
decimal balance. Set the type of acc4 to AccountType.Deposit, and set the
balance to 500.

6. Use the Write method (supplied with the CreateAccount class) to display
the contents of each account one by one. The completed code is as follows:

static void Main()
{
 BankAccount acc1, acc2, acc3, acc4;

 acc1 = new BankAccount();
 acc2 = new BankAccount(AccountType.Deposit);
 acc3 = new BankAccount(100);
 acc4 = new BankAccount(AccountType.Deposit, 500);

 Write(acc1);
 Write(acc2);
 Write(acc3);
 Write(acc4);
}

7. Compile the project and correct any errors. Execute it, and check that the
output is as expected.

 Module 9: Creating and Destroying Objects 35

Exercise 2
Initializing readonly Data

In this exercise, you will create a new class called BankTransaction. It will
hold information about a deposit or withdrawal transaction that is performed on
an account.

Whenever the balance of an account is changed by means of the Deposit or
Withdraw method, a new BankTransaction object will be created. The
BankTransaction object will contain the current date and time (generated from
System.DateTime) and the amount added (positive) or deducted (negative)
from the account. Because transaction data cannot be changed once it is created,
this information will be stored in two readonly instance variables in the
BankTransaction object.

The constructor for BankTransaction will take a single decimal parameter,
which it will use to populate the transaction amount instance variable. The date
and time instance variable will be populated by DateTime.Now, a property of
System.DateTime that returns the current date and time.

You will modify the BankAccount class to create transactions in the Deposit
and Withdraw methods. You will store the transactions in an instance variable
in the BankAccount class of type System.Collections.Queue. A queue is a
data structure that holds an ordered list of objects. It provides methods for
adding elements to the queue and for iterating through the queue. (Using a
queue is better than using an array because a queue does not have a fixed size: it
will grow automatically as more transactions are added.)

å To create the BankTransaction class

1. Open the Constructors.sln project in the Lab Files\
Lab09\Starter\Constructors folder, if it is not already open.

2. Add a new class called BankTransaction.

3. In the BankTransaction class, remove the namespace directive together
with the first opening brace ({), and the final closing brace (}). (You will
learn more about namespaces in a later module.)

4. In the summary comment, add a brief description of the BankTransaction
class. Use the description above to help you.

5. Delete the default constructor created by Visual Studio.

6. Add the following two private readonly instance variables:

a. A decimal called amount.

b. A DateTime variable called when. The System.DateTime structure is
useful for holding dates and times, and contains a number of methods for
manipulating these values.

36 Module 9: Creating and Destroying Objects

7. Add two accessor methods, called Amount and When, that return the
values of the two instance variables:

private readonly decimal amount;
private readonly DateTime when;
...
public decimal Amount()
{
 return amount;
}

public DateTime When()
{
 return when;
}

å To create the constructor

1. Define a public constructor for the BankTransaction class. It will take a
decimal parameter called tranAmount that will be used to populate the
amount instance variable.

2. In the constructor, initialize when with DateTime.Now.

DateTime.Now is a property and not a method, so you do not need to
use parentheses.

The completed constructor is as follows:

public BankTransaction(decimal tranAmount)
{
 amount = tranAmount;
 when = DateTime.Now;
}

3. Compile the project and correct any errors.

å To create transactions

1. As described above, transactions will be created by the BankAccount class
and stored in a queue whenever the Deposit or Withdraw method is
invoked. Return to the BankAccount class.

2. Before the start of the BankAccount class, add the following using
directive:

using System.Collections;

3. Add a private instance variable call tranQueue to the BankAccount class.
Its data type should be Queue and it should be initialized with a new empty
queue:

private Queue tranQueue = new Queue();

Tip

 Module 9: Creating and Destroying Objects 37

4. In the Deposit method, before returning, create a new transaction using the
deposit amount as the parameter, and append it to the queue by using the
Enqueue method, as follows:

public decimal Deposit(decimal amount)
{
 accBal += amount;
 BankTransaction tran = new BankTransaction(amount);
 tranQueue.Enqueue(tran);
 return accBal;
}

5. In the Withdraw method, if there are sufficient funds, create a transaction
and append it to tranQueue as in the Deposit method, as follows:

public bool Withdraw(decimal amount)
{
 bool sufficientFunds = accBal >= amount;
 if (sufficientFunds) {
 accBal -= amount;
 BankTransaction tran = new BankTransaction(-amount);
 tranQueue.Enqueue(tran);
 }
 return sufficientFunds;
}

For the Withdraw method, the value passed to the constructor of the
BankTransaction should be the amount being withdrawn preceded by the
negative sign.

Note

38 Module 9: Creating and Destroying Objects

å To test transactions

1. For testing purposes, add a public method called Transactions to the
BankAccount class. Its return type should be Queue , and the method
should return tranQueue. You will use this method for displaying
transactions in the next step. The method will be as follows:

public Queue Transactions()
{
 return tranQueue;
}

2. In the CreateAccount class, modify the Write method to display the details
of transactions for each account. Queues implement the IEnumerable
interface, which means that you can use the foreach construct to iterate
through them.

3. In the body of the foreach loop, print out the date and time and the amount
for each transaction, by using the When and Amount methods, as follows:

static void Write(BankAccount acc)
{
 Console.WriteLine("Account number is {0}",
acc.Number());
 Console.WriteLine("Account balance is {0}",
acc.Balance());
 Console.WriteLine("Account type is {0}", acc.Type());
 Console.WriteLine("Transactions:");
 foreach (BankTransaction tran in acc.Transactions())
 {
 Console.WriteLine("Date/Time: {0}\tAmount: {1}",
Êtran.When(), tran.Amount());
 }
 Console.WriteLine();
}

4. In the Main method, add statements to deposit and w ithdraw money from
each of the four accounts (acc1, acc2, acc3, and acc4).

5. Compile the project and correct any errors.

6. Execute the project. Examine the output and check whether transactions are
displayed as expected.

 Module 9: Creating and Destroying Objects 39

u Objects and Memory

n Object Lifetime

n Objects and Scope

n Garbage Collection

In this section, you will learn what happens when an object, as opposed to a
value, goes out of scope or is destroyed and about the role of garbage collection
in this process.

40 Module 9: Creating and Destroying Objects

Object Lifetime

n Creating Objects

l You allocate memory by using new

l You initialize an object in that memory by using a
constructor

n Using Objects

l You call methods

n Destroying Objects

l The object is converted back into memory

l The memory is deallocated

In C#, destroying an object is a two-step process that corresponds to and
reverses the two-step object creation process.

Creating Objects
In the first section, you learned that creating a C# object for a reference type is
a two-step process, as follows:

1. Use the new keyword to acquire and allocate memory.

2. Call a constructor to turn the raw memory acquired by new into an object.

Destroying Objects
Destroying a C# object is also a tw o-step process:

1. De-initialize the object.

This converts the object back into raw memory. It is done by the destructor
or the Finalize method. This is the reverse of the initialization performed by
the constructor. You can control what happens in this step by writing your
own destructor or finalize method.

2. The raw memory is deallocated; that is, it is given back to the memory heap.

This is the reverse of the allocation performed by new. You cannot change
the behavior of this step in any way.

 Module 9: Creating and Destroying Objects 41

Objects and Scope

n The Lifetime of a Local Value Is Tied to the Scope in
Which It Is Declared

l Short lifetime (typically)

l Determinisitic creation and destruction

n The Lifetime of a Dynamic Object Is Not Tied to Its
Scope

l A longer lifetime

l A non-deterministic destruction

Unlike values such as ints and structs, which are allocated on the stack and are
destroyed at the end of their scope, objects are allocated on the heap and are not
destroyed at the end of their scope.

Values
The lifetime of a local value is tied to the scope in which it is declared. Local
values are variables that are allocated on the stack and not through the new
operator. This means that if you declare a variable whose type is one of the
primitives (such as int), enum, or struct, you cannot use it outside the scope in
which you declare it. For example, in the following code fragment, three values
are declared inside a for statement, and so go out of scope at the end of the for
statement:

struct Point { public int x, y; }
enum Season { Spring, Summer, Fall, Winter }
class Example
{
 void Method()
 {
 for (int i = 0; i < limit; i++) {
 int x = 42;
 Point p = new Point();
 Season s = Season.Winter;
 }
 x = 42; // Compile-time error
 p = new Point(); // Compile-time error
 s = Season.Winter; // Compile-time error
 }
}

42 Module 9: Creating and Destroying Objects

In the previous example, it appears as though a new Point is created.
However, because Point is a struct, new does not allocate memory from the
heap. The “new” Point is created on the stack.

This means that local values have the following characteristics:

n Deterministic creation and destruction

A local variable is created when you declare it, and is destroyed at the end
of the scope in which it is declared. The start point and the end point of the
value’s life are deterministic; that is, they occur at known, fixed times.

n Usually very short lifetimes

You declare a value somewhere in a method, and the value cannot exist
beyond the method call. When you return a value from a method, you return
a copy of the value.

Objects
The lifetime of an object is not tied to the scope in which it is created. Objects
are initialized in heap memory allocated through the new operator. For example,
in the following code, the reference variable eg is declared inside a for
statement. This means that eg goes out of scope at the end of the for statement
and is a local variable. However, eg is initialized with a new Example() object,
and this object does not go out of scope with eg. Remember: a reference
variable and the object it references are different things.

class Example
{
 void Method()
 {
 for (int i = 0; i < limit; i++) {
 Example eg = new Example();
 ...
 }
 // eg is out of scope
 // Does eg still exist?
 // Does the object still exist?
 }
}

This means that objects typically have the following characteristics:

n Non-deterministic destruction

An object is created when you create it, but, unlike a value, it is it not
destroyed at the end of the scope in which it is created. The creation of an
object is deterministic, but the destruction of an object is not. You cannot
control exactly when an object will be destroyed.

n Longer lifetimes

Because the life of an object is not tied to the method that creates it, an
object can exist well beyond a single method call.

Note

 Module 9: Creating and Destroying Objects 43

Garbage Collection

n You Cannot Destroy Objects in C#

l C# does not have an opposite of new (such as delete)

l This is because an explicit delete function is a prime
source of errors in other languages

n Garbage Collection Destroys Objects for You

l It finds unreachable objects and destroys them for you

l It finalizes them back to raw unused heap memory

l It typically does this when memory becomes low

So far, you have seen that you create objects in C# in exactly the same way that
you create objects in other languages, such as C++. You use the new keyword
to allocate memory from the heap, and you call a constructor to convert that
memory into an object. However, as far as the method for the destruction of
objects, there is no similarity between C# and its predecessors.

You Cannot Destroy Objects in C#
In many programming languages, you can explicitly control when an object will
be destroyed. For example, in C++ you can use a delete expression to de-
initialize (or finalize) the object (turn it back into raw memory) and then return
the memory to the heap. In C#, there is no way to explicitly destroy objects. In
many ways, this restriction is a useful one because programmers often misuse
the ability to explicitly destroy objects by:

n Forgetting to destroy objects.

If you had the responsibility for writing the code that destroyed an object,
you might sometimes forget to write the code. This can happen in C++ code,
and this is a problematic bug that causes the user’s computer to get slower
as the program uses more memory. This is known as memory leak. Often the
only way to reclaim the lost memory is to shut down and then restart the
offending program.

n Attempting to destroy the same object more than once.

You might sometimes accidentally attempt to destroy the same object more
than once. This can happen in C++ code, and it is a serious bug with
undefined consequences. The problem is that when you destroy the object
the first time, the memory is reclaimed and can be used to create a new
object, probably of a completely different class. When you then attempt to
destroy the object the second time, the memory refers to a completely
different object!

44 Module 9: Creating and Destroying Objects

n Destroying an active object.

You might sometimes destroy an object that was still being referred to in
another part of the program. This is also a serious bug known as the
dangling pointer problem, and it also has undefined consequences.

Garbage Collection Destroys Objects for You
In C#, you cannot destroy an object explicitly in code. Instead, C# has a
garbage collection, which destroys objects for you. Garbage collection is
completely automatic. It ensures that:

n Objects are destroyed.

However, garbage collection does not specify exactly when the object will
be destroyed.

n Objects are destroyed only once.

This means that you cannot get the undefined behavior of double deletion
that is possible in C++. This is important because it helps to ens ure that a C#
program always behaves in a well-defined way.

n Only unreachable objects are destroyed.

Garbage collection ensures that an object is never destroyed if another
object holds a reference to it. Garbage collection only destroys an object
when no other object holds a reference to it. The ability of one object to
reach another object through a reference variable is called reachability.
Only unreachable objects are destroyed. It is the function of garbage
collection to follow all of the object references to determine which objects
are reachable and hence, by a process of elimination, to find the remaining
unreachable objects. This can be a time-consuming operation, so garbage
collection only collects garbage to reclaim unused memory when memory
becomes low.

You can also invoke garbage collection explicitly in your code, but it is
not recommended. Let the .NET runtime manage memory for you.

Note

 Module 9: Creating and Destroying Objects 45

u Using Destructors

n The Finalize Method

n Writing Destructors

n Destructors and the Finalize Method

n Warnings About Destructor Timing

n GC.SuppressFinalize()

n Using the Disposal Design Pattern

n Using IDisposable

A destructor is a special method that you use to de-initialize an object. In this
section, you will learn how to use destructors and the Finalize method to
control the destruction of object.

This course is based on the Beta 1 version of Microsoft Visual
Studio.NET. In Beta 2 and subsequent versions of Visual Studio.NET,
destructors will always be executed, even if it is only at the end of the program.
This feature is not available in Beta 1.

Note

46 Module 9: Creating and Destroying Objects

The Finalize Method

n The Final Actions of Different Objects Will Be Different

l They cannot be determined by garbage collection

l You can write an optional Finalize method

l If present, garbage collection will call Finalize before
reclaiming the raw memory

l Finalize is the opposite of a constructor and must have
the following syntax:

protected override void Finalize() { }protected override void Finalize() { }

You have already seen that destroying an object is a two-step process. In the
first step, the object is converted back into raw memory. In the second step, the
raw memory is returned to the heap to be recycled. Garbage collection
completely automates the second step of this process for you.

However, the actions required to finalize a specific object back into raw
memory to clean it up will depend on the specific object. This means that
garbage collection cannot automate the first step for you. If there are any
specific statements that you want an object to execute as it is picked up by
garbage collection and just before its memory is reclaimed, you need to write
these statements yourself in a method called Finalize.

Finalization
When garbage collection is destroying an unreachable object, it will check
whether the class of the object has its own Finalize method. If the class has a
Finalize method, it will call the method before recycling the memory back to
the heap. The statements you write in the Finalize method will be specific to
the class, but the signature of the Finalize method must take a particular form:

n No arguments required

Remember, you do not call Finalize ; garbage collection does.
n void return type

The purpose of Finalize is not to return a result but to perform an action.
You might think it reasonable for Finalize to return a bool to indicate
whether the object was successfully finalized. The problem with this
approach is that it would not really help. When does garbage collection call
Finalize, and what would it return any value to?

 Module 9: Creating and Destroying Objects 47

n Use override modifier

All classes inherit from the Object class. The Object class has a virtual
method called Finalize. Your Finalize must override Object.Finalize . This
will become clearer after you have learned about inheritance and
polymorphism.

n Protected access

Finalize in the Object base class has protected access, and when you
override a method you are not allowed to change that method’s access. This
will become clearer after you have completed Module 10, “Inheritance in
C#.”

The following code shows an example of the SourceFile class with an
embedded StreamReader whose Finalize method closes the StreamReader:

class SourceFile
{
 public SourceFile(string name)
 {
 File src = new File(name);
 reader = src.OpenText();
 }
 ...
 protected override void Finalize()
 {
 reader.Close();
 }
 ...
 private StreamReader reader;
}

48 Module 9: Creating and Destroying Objects

Writing Destructors

n A Destructor Is an Alternative to Finalize

l It has its own syntax:
- no access modifier
- no return type, not even void
- same name as name of class with leading ~
- no parameters

class SourceFile
{

~SourceFile() { ... }
}

class SourceFile
{

~SourceFile() { ... }
}

You can write a destructor as an alternative to the Finalize method. The
relationship between Finalize and the destructor is extremely close and is
explained in detail in the next topic. The Finalize method and destructors share
the following features:

n No access modifier

You do not call the destructor; garbage collection does.

n No return type

The purpose of the destructor is not to return a value but to perform the
required clean-up actions.

n No parameters can be passed

Again, you do not call the destructor, so you cannot pass it any arguments.
Note that this means that the destructor cannot be overloaded.

 Module 9: Creating and Destroying Objects 49

Destructors and the Finalize Method

n The Compiler Will Automatically Convert a Destructor
into a Finalize Method

class SourceFile
{

~SourceFile() { Console.WriteLine("Dying"); }
public void Test() { Finalize(); }

}

class SourceFile
{

~SourceFile() { Console.WriteLine("Dying"); }
public void Test() { Finalize(); }

}

class SourceFile
{

~SourceFile() { }
protected void Finalize() { }

}

class SourceFile
{

~SourceFile() { }
protected void Finalize() { }

}

Will this compile without error?

What happens when you call Test?

When you write a destructor for a class, the compiler will automatically convert
that destructor into a Finalize method for that class. A Finalize method
generated from a destructor and a Finalize method that you have written
yourself are almost identical. In particular, garbage collection treats them the
same.

One important difference between them is that a destructor will be converted
into a Finalize method that automatically calls Finalize on its base class.

Question 1
Examine the following code. Will it compile without error?

class SourceFile
{
 ~SourceFile() { }
 protected void Finalize() { }
}

The code example will generate an error when compiled. The destructor is
converted into a Finalize method that has no arguments. This means that after
the compiler conversion has taken place, there will be two methods called
Finalize that expect no arguments. This is not allowed and will cause the
compiler to generate a “duplicate definition” diagnostic message.

50 Module 9: Creating and Destroying Objects

Question 2
Examine the following code. What will happen when you call Test?

class SourceFile
{
 ~SourceFile()
 {
 ...
 Console.WriteLine("Dying");
 }
 public void Test()
 {
 Finalize();
 }
}

To answer this question, remember that the compiler will convert the destructor
into a Finalize method. In other words, the above example will become the
following:

class SourceFile
{
 protected void override Finalize()
 {
 ...
 Console.WriteLine("Dying");
 }
 public void Test()
 {
 Finalize();
 }
}

This means that when you call Test, the Console.WriteLine statement inside
the destructor will be executed, writing “Dying” to the console.

This second question also shows that you can explicitly call the
Finalize method on an object. But remember, garbage collection will also call
the Finalize method on the object when the object is garbage collected, leading
to the same object being finalized more than once! The solution to this multiple
finalization problem is covered later in this section.

You cannot declare destructors or Finalize methods in structs.

Important

Note

 Module 9: Creating and Destroying Objects 51

Warnings About Destructor Timing

n You Cannot Rely on Destructors Being Called

l Garbage collection is only called if memory becomes low

l What if memory never becomes low?

n The Order of Destruction Is Undefined

l Not necessarily the reverse order of construction

You have seen that in C# garbage collection is responsible for destroying
objects when they are unreachable. This is unlike other languages such as C++,
in which the programmer is responsible for explicitly destroying objects.
Shifting the responsibility for destroying objects away from the programmer is
a good thing, but it you cannot control exactly when a C# object is destroyed.
This is sometimes referred to as non-deterministic finalization.

You Cannot Rely on Destructors Being Called
When garbage collection is called upon to destroy some objects, it must find the
objects that are unreachable, call their Finalize methods (if they have them),
and then recycle their memory back to the heap. This is a complicated process
(the details of which are beyond the scope of this course), and it takes a fair
amount of time. Consequently, garbage collection does not run unless it needs
to (and when it does it runs in its own thread).

The one time when garbage collection must run is when the heap runs out of
memory. But this means that if your program starts, runs, and then shuts down
without getting close to using the entire heap, your Finalize methods may never
get called, and if they do, it will only be when the program shuts down. In many
cases, this is perfectly acceptable. However, there are situations in which you
must ensure that your Finalize methods are called at known points in time. You
will learn how to deal with these situations later in this section.

52 Module 9: Creating and Destroying Objects

The Order of Destruction Is Undefined
In languages like C++, you can explicitly control when objects are created and
when objects are destroyed. In C#, you can control the order in which you
create objects but you cannot control the order in which they are destroyed.
This is because you do not destroy the objects at all— garbage collection does.

In C#, the order of the creation of objects does not determine the order of the
destruction of those objects. They can be destroyed in any order, and many
other objects might be destroyed in between. However, in practice this is rarely
a problem because garbage collection guarantees that an object will never be
destroyed if it is reachable. If one object holds a reference to a second object,
the second object is reachable from the first object. This means that the second
object will never be destroyed before the first object.

 Module 9: Creating and Destroying Objects 53

GC.SuppressFinalize()

n You Can Explicitly Call Finalize on an Object

l This can sometimes be useful

n If You Call Finalize, Garbage Collection Will Call It Again
When It Collects the Object

l To prevent this, suppress finalization if you explicitly call
Finalize

class GC
{

...
public static void SuppressFinalize(Object o)...

}

class GC
{

...
public static void SuppressFinalize(Object o)...

}

GC is part of the .NET SDK

You can explicitly call the Finalize method, but this creates a potential problem.
If an object has a Finalize method, garbage collection will see it and will also
call it when it destroys the object. The following code provides an example:

class DoubleFinalization
{
 ~DoubleFinalization()
 {
 ...
 }
 public void Dispose()
 {
 Finalize();
 }
 ...
}

54 Module 9: Creating and Destroying Objects

The problem with this example is that if you call Dispose, it will call Finalize
(generated from the destructor). Then, when the object is garbage collected,
Finalize will be called again.

To avoid duplicate finalization, you can call the SuppressFinalize method of
the GC class and pass in the object that already had its Finalize method called.
The following code provides an example:

class SingleFinalization
{
 ~SingleFinalization()
 {
 ...
 }
 public void Dispose()
 {
 Finalize();
 GC.SuppressFinalize(this);
 }
 ...
}

There are several more problems related to this technique. These
problems are explored in the next topic.

Note

 Module 9: Creating and Destroying Objects 55

Using the Disposal Design Pattern

n To Reclaim a Resource:

l Provide a public method (often called Dispose) that calls
Finalize and then suppresses finalization

l Ensure that calling Dispose more than once is benign

l Ensure that you do not try to use a reclaimed resource

If you need to reclaim a resource and you cannot wait for garbage collection to
call Finalize implicitly for you, you can provide a public method that calls
Finalize.

Memory Is Not the Only Resource
Memory is the most common resource that your programs use, and you can rely
on garbage collection to reclaim unreachable memory when the heap becomes
low. However, memory is not the only resource. Other fairly common resources
that your program might use include file handles and mutex locks. Often these
other kinds of resources are in much more limited supply than memory, or need
to be released quickly.

The Disposal Method Design Pattern
In these situations, you cannot rely on garbage collection to perform the release
by means of a Finalize method, because, as you have seen, you cannot know
when garbage collection will call Finalize. Instead, you should write a public
method that releases the resource, and then make sure to call this method at the
right point in the code. These methods are called Disposal Methods. (This is a
well-known pattern, but it is not in Design Patterns: Elements of Reusable
Object-Oriented Software.) In C#, there are three major points that you need to
remember when implementing a Disposal Method:

n Remember to call SuppressFinalize.

n Ensure that the Disposal Method can be called repeatedly.

n Avoid using a released resource.

56 Module 9: Creating and Destroying Objects

Calling SuppressFinalize
The following code shows how to call SuppressFinalize :

class Example
{
 ...
 ~Example()
 {
 rare.Dispose();
 }
 public void Dispose()
 {
 Finalize();
 GC.SuppressFinalize(this);
 }
 ...
 private Resource rare = new Resource();
}

Calling the Disposal Method Multiple Times
Remember, the Disposal Method is public, so it can be called repeatedly. The
easiest way to make sure multiple calls are possible is with a simple bool field.
The following code provides an example:

class Example
{
 ...
 ~Example()
 {
 disposed = true;
 rare.Dispose();
 }
 public void Dispose()
 {
 if (!disposed) {
 Finalize();
 GC.SuppressFinalize(this);
 }
 }
 ...
 private Resource rare = new Resource();
 private bool disposed = false;
}

 Module 9: Creating and Destroying Objects 57

Avoiding the Use of Released Resources
The easiest way to do avoid using released resources is to reset the reference to
null in Finalize and check for null in each method, as follows:

class Example
{
 ...
 ~Example()
 {
 rare.Dispose();
 rare = null;
 disposed = true;
 }

 public void Dispose()
 {
 if (!disposed) {
 Finalize();
 GC.SuppressFinalize(this);
 }
 }

 public void Use()
 {
 if (!disposed) {
 Wibble w = rare.Stuff();
 ...
 } else {
 throw new DisposedException();
 }
 }

 private Resource rare = new Resource();
 private bool disposed = false;
}

58 Module 9: Creating and Destroying Objects

Using IDisposable

n If Any Method Throws an Exception

l Subsequent statements may not be executed

l Resources may not be released by your code

n Use try-finally Blocks Carefully

n A Proposed Modification to C# Handles This By:

l Extending the using statement to indicate resource use

l Providing the IDisposable interface that declares a
Dispose method, for use by resource classes

When writing disposal code, it is important to be aware of the some of the
common programming errors. For example, there is a dispose method trap that
is quite common. Look at the following code, and decide whether reader.Close
(whic h is a Disposal Method that reclaims a scarce file handle) is called.

class SourceFile
{
 public SourceFile(string name)
 {
 File src = new File(name);
 contents = new char[(int)src.Length];
 StreamReader reader = src.OpenText();
 reader.ReadBlock(contents, 0, contents.Length);
 reader.Close();
 }
 ...
 private char[] contents;
}

 Module 9: Creating and Destroying Objects 59

The answer is that reader.Close is not guaranteed to be called. The problem is
that if a statement before the call to Close throws an exception, the flow of
control will bypass the call to Close. One way you can solve this problem is by
using a finally block, as follows:

class SourceFile
{
 public SourceFile(string name)
 {
 StreamReader reader = null;
 try {
 File src = new File(name);
 contents = new char[(int)src.Length];
 reader = src.OpenText();
 reader.ReadBlock(contents, 0, contents.Length);
 }
 finally {
 if (reader != null) {
 reader.Close();
 }
 }
 }
 ...
 private char[] contents;
}

This solution works, but it is not completely satisfactory because:

n You must reorder the declaration of the resource reference.

n You must remember to initialize the reference to null.

n You must remember to ensure that the reference is not null in the finally
block.

n It quickly becomes unwieldy if there is more than one resource to dispose of.

Proposed Modifications to C#
A proposed amendment to C# provides a solution that avoids all of these
problems. It uses an extension of the using statement (part of the C# language)
with the IDisposable interface (part of the C# .NET Framework SDK) to
implement resource classes.

These new enhancements are not available in Beta 1 and therefore are not
covered in this course.

60 Module 9: Creating and Destroying Objects

Lab 9.2: Destroying Objects

Objectives
In this lab, you will learn how to use finalizers to perform processing before
garbage collection destroys an object.

After completing this lab, you will be able to:

n Create a destructor.

n Make requests of garbage collection.

n Use the Disposal design pattern.

Prerequisites
Before working on this lab, you must be able to:

n Create classes and instantiate objects.

n Define and call methods.

n Define and use constructors.

n Use the StreamWriter class to write text to a file.

You should also have completed Lab 9.1. If you did not complete Lab 9.1, you
can use the solution code provided.

Estimated time to complete this lab: 15 minutes

 Module 9: Creating and Destroying Objects 61

Exercise 1
Creating a Destructor

In this exercise, you will create a finalizer for the BankTransaction class. The
finalizer will allow BankTransaction to persist its data to the end of the file
Transactions.dat in the current directory. The data will be written out in human-
readable form.

å To save transactions

1. Open the Finalizers.sln project in the Lab Files\Lab09\Starter\Finalizers
folder.

2. Add the following using directive to the start of the BankTransaction.cs file:

using System.IO;

3. In the BankTransaction class, add a destructor, as follows:

a. It should be called ~BankTransaction.

b. It should not have an access modifier.

c. It should not take any parameters.

d. It should not return a value.

4. In the body of the destructor, add statements to:

a. Create a new StreamWriter variable that opens the Transactions.dat file
in the current directory in append mode (that is, it writes data to the end
of the file if it already exists.) You can achieve this by using the
File.AppendText method. For information about this method, search for
“File.AppendText” in the .NET Framework SDK Help documents.

b. Write the contents of the transaction to this file. (Format so that it is
readable.)

c. Close the file:

~BankTransaction()
{
 StreamWriter swFile =
ÊFile.AppendText("Transactions.Dat");
 swFile.WriteLine(“Date/Time: {0}\tAmount {1}”, when,
Êamount);
 swFile.Close();
}

5. Compile your program and correct any errors.

62 Module 9: Creating and Destroying Objects

å To test the destructor

1. Review the CreateAccount.cs test harness. The test harness:

a. Creates an account (acc1).

b. Deposits money to and withdraws money from acc1.

c. Prints the contents of acc1 and its transactions.

When the Main method finishes, what will happen to the account acc1 and
the transactions?

2. Compile and execute the program. Verify that the information displayed is
as expected. Is the Transactions.dat file created as expected? (It should be in
the bin \debug folder in the project folder.) If not, why not?

You will find that the Transactions.dat file is not created because garbage
collection never needs to collect garbage in such a small program, so the
destructor is never executed. For a bank, this is not a good situation because the
bank is probably not allowed to lose records of transactions. You will fix this
problem in Exer cise 2 by using the Disposal pattern.

Note

 Module 9: Creating and Destroying Objects 63

Exercise 2
Using the Disposal Design Pattern

In this exercise, you will use the Disposal design pattern to ensure that a
BankTransaction’s data is saved on demand rather than when garbage
collection destroys the BankTransaction. You will also need to inform
garbage collection that the BankTransaction has already been disposed of and
suppress any attempt by garbage collection to destroy it again later.

You will add a Dispose method to the BankAccount and BankTransaction
classes. The Dispose method in BankAccount will iterate through all of the
transactions in its transaction queue, and call Dispose for each transaction.

å To make BankTransaction suitable for finalizing

1. In the BankTransaction class, add a public void method called Dispose
that only calls Finalize:

public void Dispose()
{
 Finalize();
}

2. Add to the end of the destructor a call to GC.SuppressFinalize(this).

Calling Finalize will invoke the destructor. You need to ensure that garbage
collection does not call the destructor again after you have used it.

64 Module 9: Creating and Destroying Objects

å To create a Dispose method for the BankAccount class

1. In the BankAccount class, add a using System directive.

2. Add a private bool instance variable called dead. Initialize it to false.

3. Add a public method called Dispose. It should take no parameters and have
a void return type.

4. In the Dispose method, add statements to:

a. Examine the value of dead. If it is true , return from the method and do
nothing else.

b. If dead is false, iterate through all of the BankTransaction objects in
tranQueue and call Dispose for each one. Use a foreach statement, as
you did in Lab 9.1.

c. Call GC.SuppressFinalize(this) to prevent garbage collection from
destroying the account again.

d. Set dead to true .

The completed code should be as follows:

public void Dispose()
{
 if (dead) return;
 foreach(BankTransaction tran in tranQueue)
 {
 tran.Dispose();
 }
 GC.SuppressFinalize(this);
 dead = true;
}

5. Compile the project and correct any errors.

å To test the destructor

1. Open the CreateAccount.cs test harness.

2. Add a statement to the end of Main that calls the Dispose method of acc1,
to ensure that it is saved correctly, as follows:

acc1.Dispose();

3. Compile the project and correct any errors.

4. Run the program. The same output as before should be displayed on the
screen. However, this time the Transactions.dat file should also be created.

 Module 9: Creating and Destroying Objects 65

Review

n Using Constructors

n Initializing Data

n Objects and Memory

n Using Destructors

1. Declare a class called Date with a public constructor that expects three int
parameters called year, month, and day.

2. Will the compiler generate a default constructor for the Date class that you
declared in question 1? What if Date were a struct with the same three-int
constructor?

66 Module 9: Creating and Destroying Objects

3. Which method does garbage collection call on the object just before it
recycles the object’s memory back to the heap? Declare a class called
SourceFile that contains this method.

4. What is wrong with the following code fragment?

class Example
{
 ~Example() { }
 protected void override Finalize() { }
}

