

Contents

Overview 1

Describing Assemblies 2

Choosing a Deployment Strategy 11

Deploying Applications 18

Lab 10.1: Packaging a Component
Assembly 20

Demonstration: Deploying a Web-Based
Application 28

Lab 10.2: Deploying a Windows-Based
Application 29

Review 33

Module 10: Deploying
Applications

This course is based on the prerelease version (Beta 2) of Microsoft® Visual
Studio® .NET Enterprise Edition. Content in the final release of the course may be
different from the content included in this prerelease version. All labs in the course are to
be completed with the Beta 2 version of Visual Studio .NET Enterprise Editio n.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

T he names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 10: Deploying Applications iii

Instructor Notes

This module provides students with the skills necessary to deploy Microsoft®
Visual Basic ® .NET applications. They will learn what deployment choices are
available to them and how to use the various deployment project templates to
successfully deploy any type of application

After completing this module, students will be able to:

n Describe an assembly.

n List the different types of application deployment.

n Deploy a component assembly.

n Deploy an application based on Microsoft Windows®.

n Deploy a Web-based application.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_10.ppt

n Module 10, “Deploying Applications”

Preparation Tasks
To prepare for this module, you should:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstration.

n Complete the labs.

Presentation:
75 Minutes

Labs:
45 Minutes

iv Module 10: Deploying Applications

Demonstration
This section provides demonstration procedures that do not fit in the margin
notes or are not appropriate for the student notes.

Deploying a Web-Based Application
å To prepare for the demonstration

1. Open Visual Basic .NET, and then open Mod10.sln from install folder\
DemoCode\Mod10 folder.

2. Quickly demonstrate the application. For an existing customer, use
john@tailspintoys.msn.com with a password of password. For a new
customer, use your own details.

Students should be familiar with this application, because they created this
application in an earlier lab.

å To create the deployment project

1. On the File menu, point to Add Project, and then click New Project .

2. In the Project Types pane, click Setup and Deployment Projects, and in
the Templates pane, click Web Setup Project . Set the location to
install folder\DemoCode\Mod10, and then click OK.

3. In the File System Editor, right-click the Web Application Folder, point to
Add, and then click Project Output.

4. In the Add Project Output Group dialog box, select Primary output and
Content Files, and then click OK.

5. In the File System Editor, select the Web Application Folder.

6. In the Properties window, change the VirtualDirectory property to
Demo10.

 Module 10: Deploying Applications v

å To specify launch conditions

1. Open the Launch Conditions Editor. Explain the existing conditions that
verify that Internet Information Server (IIS) is present on the target server.

2. Right-click Search Target Machine, click Add File Search, and rename
this Check for Cargo Database.

3. Change the properties of this search by using the information in the
following table.

Property Setting

Property CARGOCHECK

Folder [ProgramsFilesFolder]

FileName Cargo.mdf

Depth 3

4. In the Launch Conditions Editor, right-click Launch Conditions, click Add
Launch Condition, and then rename this Cargo Condition.

5. Change the properties of this condition by using the information in the
following table.

Property Setting

Condition CARGOCHECK

Message Cargo database is not installed

6. On the Build menu, click Build WebSetup1.

å To deploy and test the application

1. On the Project menu, click Install, and then wait for the deployment to
finish.

2. Open Internet Services Manager, and check that a new application called
Demo10 has been installed.

3. Open Internet Explorer, and browse to
http://localhost/Demo10/DefaultPage.aspx. Show the students that this
application works as expected.

vi Module 10: Deploying Applications

Module Strategy
Use the following strategy to present this module:

n Describing Assemblies

In this lesson, explain what assemblies are, how to create strong names, and
how to version assemblies. You have discussed assemblies at various points
throughout this course. Use this lesson to clarify any questions that have
been raised throughout the previous modules.

Students will have an opportunity to create a strong-named assembly in
Lab10.1 later in this module.

n Selecting a Deployment Strategy

In this lesson, explain to students the advantages gained by deploying
applications in Visual Studio .NET. You will review the methods of
deployment, from using XCOPY to creating a Windows Installer
application. Be sure to stress that while XCOPY can simplify deployment, it
cannot be used when registration of components is necessary. The Windows
Installer is the best choice when deploying complex applications.

n Deploying Applications

This lesson covers how to deploy both Windows-based and Web-based
applications. Although these two types are quite disparate, the steps for
deployment are actually very similar. You will review how to use the editor
windows to customize your deployment, and you will show students how to
use both the File System and Launch Conditions editors in the
demonstration.

Both of the labs for this module occur during this lesson. In the first one,
students will package a component within a merge module, and in the
second, they will include that in a setup project for a Windows-based
application.

You will also show the students how to deploy a Web-based application in
the demonstration.

 Module 10: Deploying Applications 1

Overview

n Describing Assemblies

n Choosing a Deployment Strategy

n Deploying Applications

After you create and test an application, you will want to distribute it for use on
other computers. The users may be end users running a Web application or an
application based on Microsoft® Windows®, or other developers using a code
library.

In this module, you will learn how to deploy assemblies for use by client
applications, how to decide what type of distribution strategy to implement, and
how to deploy Windows-based and Web-based applications.

After completing this module, you will be able to:

n Describe an assembly.

n List the different types of application deployment.

n Deploy a component assembly.

n Deploy an application based on Windows.

n Deploy a Web-based application.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about the options available
to you when deploying
Visual Basic .NET– based
applications.

2 Module 10: Deploying Applications

u Describing Assemblies

n Assemblies Overview

n Benefits of Strong-Named Assemblies

n Creating Strong-Named Assemblies

n Versioning Strong-Named Assemblies

n Using the Global Assembly Cache

In this lesson, you will learn about the role of assemblies in Microsoft
Visual Basic ® .NET version 7.0. You will learn about the benefits of strong-
named assemblies and how to create them. Finally, you will learn how to
version assemblies.

After completing this lesson, you will be able to:

n Describe the benefits of using strong-named assemblies.

n Create strong-named assemblies.

n Version assemblies.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson examines
assemblies and the specific
requirements for creating
components.

 Module 10: Deploying Applications 3

Assemblies Overview

n Contains Code, Resources, and Metadata

n Provides Security, Type, and Reference Scope

n Forms a Deployment Unit

n Versionable

n Side-by-Side Execution Allows Multiple Installed
Versions

n Global Assembly Cache Allows Assembly Sharing

An assembly is the building block of a Microsoft .NET-compatible application.
It is a built, versioned, and deployed unit of functionality that can contain one
or more files. An application can be composed of one or more assemblies.

You can think of an assembly as a collection of types and resources that form a
logical unit of functionality and are built to work together. Using existing
assemblies to add extra functionality to your application is similar to the way
that you use Microsoft ActiveX® libraries in previous versions of Visual Basic.
You also can create your own assemblies for other applications to use.

What makes assemblies different from .exe or .dll files in earlier versions of
Windows is that they contain all the information you would find in a type
library, in addition to information about everything else necessary to use the
application or component.

Assemblies Contain Code, Resources, and Metadata
An assembly contains:

n Intermediate language (IL) code to be executed

n Any required resources, such as pictures and assembly metadata, which
exists in the form of the assembly manifest.

n Type metadata

Type metadata provides information about available classes, interfaces,
methods, and properties, similar to the way that a type library provides
information about COM components.

An assembly can be grouped into a single portable executable (PE) file, such as
an .exe or .dll file, or it can be made up of multiple PE files and external
resource files, such as a bitmap.

Topic Objective
To explain the function of
assemblies.

Lead-in
An assemblies is the
building block of a .NET-
compatible application.

Delivery Tip
Point out that all
applications will also use
the .NET Framework
assemblies.

4 Module 10: Deploying Applications

The assembly manifest contains assembly metadata. It provides information
about the assembly title, description, version information, and so on. It also
provides information about linking to the other files in the assembly. This
enables the assembly to be self describing, which allows you to distribute it
using the XCOPY command. The information in the manifest is used at run
time to resolve references and validate loaded assemblies.

The assembly manifest can be stored in a separate file but is usually compiled
as part of one of the PE files.

Assemblies Provide Boundaries
Assemblies provide the following boundaries:

n Security boundary

You set security permissions at an assembly level. You can use these
permissions to request specific access to an application, such as file I/O
permissions if the application must write to a disk. When the assembly is
loaded at run–time, the permissions requested are entered into the security
policy to determine if permissions can be granted.

n Type boundary

An assembly provides a boundary for data types, because each type has the
assembly name as part of its identity. As a result, two types can have the
same name in different assemblies without any conflict.

n Reference scope boundary

An assembly provides a reference scope boundary by using the assembly
manifest for resolving type and resource requests. This metadata specifies
which types and resources are exposed outside the assembly.

Assemblies Form a Deployment Unit
Assemblies are loaded by the client application when they are needed, allowing
for a minimal download where appropriate.

Assemblies Are Versionable
An assembly is the smallest versionable unit in a .NET-compliant application.
The assembly manifest describes the version information and any version
dependencies specified for any dependent assemblies. You can only version
assemblies that have a strong name.

Side-by-Side Execution Enables Multiple Installed
Versions
Multiple versions of an assembly can run side-by-side simultaneously on the
same computer or even in the same process. This ability greatly aids a client’s
compatibility with previous versions, because clients can specify which version
they want to use regardless of how many new versions are deployed on the
computer. This avoids the .dll conflicts that happen when a client application is
expecting a partic ular version of an assembly but that version has been
overwritten with an inappropriate version by another installation.

 Module 10: Deploying Applications 5

The Global Assembly Cache Enables Assembly Sharing
If an assembly is to be shared by several applications on a particular computer,
you can install the assembly into the global assembly cache. Deploying
assemblies into the cache can enhance performance because the operating
system must only load one instance of the assembly. It also increases file
security because only users with local Administrator privileges can delete
assemblies in the global assembly cache.

Serviced component applications, such as COM+ applications, are often
deployed into the global assembly cache so that all clients access only a single
copy of the component assembly.

The .NET Framework assemblies are installed into the global assembly
cache.

Note

6 Module 10: Deploying Applications

Benefits of Strong-Named Assemblies

n Guaranteed Uniqueness

l No two strong names can be the same

n Protected Version Lineage

l Only legitimate assembly versions can be loaded

n Enforced Assembly Integrity

l Assemblies are tested for unauthorized modification
before loading

You can use strong-named assemblies to ensure safe use of the components
contained within the assembly. A strong-named assembly is a requirement for
serviced components because only a single instance of the assembly is loaded
regardless of the number of client applications.

Guaranteed Uniqueness
Strong names guarantee that an assembly name is unique and cannot be used by
anyone else. You generate strong names through the use of public and private
key pairs when the assembly is compiled.

Protected Version Lineage
By default, applications can only run with the version of the assembly that they
were originally compiled with, unless a setting in a configuration file overrides
it. If you want to update a component, you can use a publisher policy file to
redirect an assembly binding request to the new version. This link ensures that a
client application cannot use an incorrect component assembly unless the client
application is explicitly recompiled.

Enforced Assembly Integrity
The .NET Framework provides an integrity check that guarantees that strong-
named assemblies have not been modified since they were built. This ensures
that no unauthorized alterations can be made to the component assembly after
the client application is compiled.

Topic Objective
To explain the benefits of
strong-named assemblies.

Lead-in
Strong-named assemblies
provide enhanced features
to…

Delivery Tip
You may need to elaborate
on public and private key
pairs.

 Module 10: Deploying Applications 7

Creating Strong-Named Assemblies

n Requires Identity, Public Key, and Digital Signature

n Generating the Public-Private Key Pair

l Create a .snk file

l Use the project property pages

The.NET Framework can create a strong-named assembly by combining the
assembly identity (its name, version, and culture information), a public key, and
a digital signature.

You must generate the strong name key file (.snk extension) that contains the
public -private key pair before you build the assembly. You can do this
manually by using the Strong Name tool (Sn.exe) utility or the
Visual Basic .NET IDE.

In the property pages of the project, you can use the Strong Name section to
automatically generate a strong name key file and add it to the project. The
public key is inserted into the assembly manifest at compile time, and the
private key is used to sign the assembly.

Topic Objective
To explain the benefits of
strong-named assemblies.

Lead-in
Strong-named assemblies
provide enhanced features
to…

8 Module 10: Deploying Applications

Versioning Strong-Named Assemblies

n When a Client Makes a Binding Request, the Runtime
Checks:

l The original binding information inside the assembly

l Configuration files for version policy instructions

n Use a Publisher Policy File to Redirect the Binding
Request

<bindingRedirect oldVersion="1.0.0.0"
newVersion="2.0.0.0"/>

<bindingRedirect oldVersion="1.0.0.0"
newVersion="2.0.0.0"/>

Often you will want to update a component without redeploying the client
application that is using it. However, by default, an application only functions
with the original component that it was compiled with. To overcome this
behavior, you must ensure that your components have strong names, which
enables you to version them at a later date.

When a client application makes a binding request, the runtime performs the
following tasks:

n Checks the original assembly reference for the version to be bound

n Checks the configuration files for version policy instructions

Topic Objective
To examine how to version
assemblies.

Lead-in
Assemblies can be
versioned by specifying a
version number in the
assembly manifest.

 Module 10: Deploying Applications 9

You can use a publisher policy file to redirect a binding request to a newer
instance of a component. The following example shows a publisher policy file.
Note the publicKeyToken attribute, a hexadecimal value, which is used to
identify the strong name of the assembly. This value can be obtained by using
Sn.exe with the –T switch.

<configuration>
 <runtime>
 <assemblyBinding>
 <dependentAssembly>
 <assemblyIdentity name="myasm"
 publicKeyToken="e9b4c4996039ede8"
 culture="en-us"/>
 <bindingRedirect
 oldVersion="1.0.0.0"
 newVersion="2.0.0.0"/>
 <codeBase version="2.0.0.0"
 href="http://www.Microsoft.com/Test.dll"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

You can compile this XML file into a publisher policy assembly, to be shipped
with the new component, using the Assembly Generation tool (Al.exe). This
signs the assembly with the strong name originally used, which confirms to the
user that the updated component comes from a valid source.

10 Module 10: Deploying Applications

Using the Global Assembly Cache

n Performance

l Quicker binding

l Only one instance ever loaded

n Shared Location

l Can use machine configuration file to redirect bindings

n File Security

l Only administrators can delete files

n Side-by-side Versioning

l Can install multiple copies using different version
information

You can store your shared components inside the global assembly cache. To do
this, you must create a strong name for the assembly, and when deploying the
component, you must specify that it is stored in the global assembly cache, as
opposed to the common files folder for the client application. Using the global
assembly cache has the following benefits.

Performance
If the component is stored in the cache, the strong name does not need to be
verified each time the component is loaded. This method also guarantees that
only one instance of the component is loaded in memory, reducing the overhead
on the target computer.

Shared Location
You can use the computer configuration file to redirect all bindings to the
global assembly cache, providing simpler administration of assemblies.

File Security
Only users with administrative privileges can delete files from the cache.

Side-by-Side Versioning
You can install multiple copies of the same component, with different version
information, into the cache.

Topic Objective
To explain why to install
assemblies into the global
cache.

Lead-in
The global assembly cache
offers many advantages for
the administration and
usage of your components.

 Module 10: Deploying Applications 11

u Choosing a Deployment Strategy

n Deployment Overview

n Copying Projects

n Deploying Projects

n Types of Deployment Projects

There are a variety of options available when deploying Visual Basic.NET –
based applications. Choosing what option to us e depends on the type of
application that you are deploying and the version of Windows you are
deploying it to.

Before you can begin the distribution process, you must understand the
differences in the various strategies available to you. Some of these simply
involve copying the application to an appropriate place, some involve creating a
deployment project to copy the application and register any components, and
some involve creating a complete setup application for use by the end user.

After completing this lesson, you will be able to:

n Describe the deployment options available to you.

n Match deployment options with specific scenarios.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Applications can be
deployed in a variety of
ways…

12 Module 10: Deploying Applications

Deployment Overview

n No-Impact Applications

n Private Components

n Side-by-Side Versioning

n XCOPY Deployment

n On-the-Fly Updates

n Global Assembly Cache

Application developers have traditionally faced many issues when deploying
their applications. Use of the deployment features in Microsoft
Visual Studio® .NET alleviates some of these issues.

The following table lists some of the advantages of using Visual Studio .NET
deployment.

Feature Description

No-impact applications All applications are isolated, which results in fewer .dll

conflicts.

Private components By default, components are installed into the application
directory. Therefore, you can only use it in that
application.

Side-by-side versioning You can have more than one copy of a component on a
computer, which can prevent versioning problems.

XCOPY deployment Self-describing components can just be copied to the target
computer.

On-the-fly updates .dlls are not locked when in use and can be updated by an
administrator without stopping the application.

Global assembly cache You can share assemblies between applications by
installing them into the global assembly cache. This can
also increase performance because only one copy of the
assembly is loaded.

Topic Objective
To discuss the advantages
that Visual Studio .NET
deployment offers over
deployment in earlier
versions.

Lead-in
The new deployment
options in
Visual Studio .NET offer
distinct advantages over the
options in the Package and
Deployment Wizard in
Visual Basic 6.

 Module 10: Deploying Applications 13

Copying Projects

n Copying a Project

l There is an extra menu command for Web applications

l You can copy a project directly to a Web server

n Using the XCOPY Command

l Use the DOS command

l You can use it for any type of application

Deploying simple applications with no dependencies can be as easy as copying
the application to the target computer. Using this method can be quick, although
it does not take advantage of the all the new features available in
Visual Studio .NET deployment.

Copying a Project
When you are working with a Web application, you have an extra menu item
available, Copy Project, that allows you to copy the project directly to a Web
server. You can specify the access method, for example with Microsoft
FrontPage® Server extensions, and whether to copy just the necessary
application files, the entire project, or all files in the project directory.

Consider the following facts when using the Copy Project command:

n Assemblies are not registered for unmanaged client access.

n The locations of assemblies are not verified.

Using the XCOPY Command
You can use the Microsoft MS-DOS® XCOPY command to deploy any type of
application. Consider the following facts when deploying with the XCOPY
command:

n Assemblies are not registered for unmanaged client access.

n The locations of assemblies are not verified.

n Project-to-project references are not copied.

n Internet Information Server (IIS) is not configured for Web applications.

n You cannot take advantage of the Zero Administration initiative for
Windows feature in Microsoft Windows Installer.

Topic Objective
To discuss the simplest
method of distributing an
application.

Lead-in
Distributing applications can
be as simple as using the
MS-DOS XCOPY
command. However, this
method does have certain
restrictions.

14 Module 10: Deploying Applications

Deploying Projects

n Windows Installer

l Is used for Windows-based and Web-based deployment

l Copies all required files and registers components

l Configures IIS for Web-based applications

n Merge Modules

l Are used for reusable components

l Are included in an .msi file

In general, you will create applications that have dependencies on other
assemblies or components. In this situation, you must create a deployment
package to ensure that the external references are correctly registered and
located.

Windows Installer
You can use the Windows Installer to package all your data and installation
instructions in one file, an .msi file, for easy distribution. Using the Windows
Installer provides the following advantages:

n Support for the Zero Administration initiative for Windows

This helps overcome the problems of overwriting shared components .

n Safe uninstall options

Windows Installer provides an uninstall program that detects shared
components and does not remove them.

n Rollback

If the install fails before it is complete, for example, if the connection to the
network share containing the source files is lost, then the Windows Installer
will return the computer to its original state.

You can use the Windows Installer to package both Windows-based and Web-
based applications.

Topic Objective
To provide an overview of
the deployment options
available.

Lead-in
The Windows Installer
contains many features that
enhance the deployment of
your applications.

 Module 10: Deploying Applications 15

Merge Modules
You can use merge module projects to package shared components that will be
used by more than one application on the target computer. You can then
incorporate these modules into .msi packages whenever that component is used
in a solution. Using merge modules has the following advantages:

n Eliminates versioning problems

n Captures the dependencies of the component

n Creates reusable setup code

16 Module 10: Deploying Applications

Types of Deployment Projects

n Cab Project – For Downloading from Web Server to
Legacy Browser

n Merge Module Project – For Shared Components

n Setup Project – For Windows-Based Applications

n Setup Wizard – To Walk Through Deployment Project
Creation

n Web Setup Project – For Web-Based Applications

There are five options available to you when creating a deployment project in
Visual Studio .NET. The following table lists the types of projects and their
uses .

Project type Use

Cab project Use this to create compressed CAB files for downloading

from a Web server.

Merge module project Use this to create a setup for a shared component.

Setup project Use this to create a setup for a Windows -based
application.

Setup Wizard Use this to initiate the Setup Wizard that leads you
through the steps of creating one of the four main
deployment projects.

Web setup project Use this to create a setup for a Web-based application.

Topic Objective
To discuss the types of
deployment projects
available in
Visual Studio .NET.

Lead-in
Choosing the correct type of
deployment project is
imperative.

 Module 10: Deploying Applications 17

To create a new deployment project, click Setup and Deployment Projects in
the New Project dialog box, as shown below:

18 Module 10: Deploying Applications

u Deploying Applications

n Creating a Merge Module Project

n Creating a Setup Project

n Using the Editors

n Creating Installation Components

n Deploying the Application

To deploy applications, you need to create a setup project with all your
installation preferences and build the project for distribution.

After completing this lesson, you will be able to:

n Describe the two types of setup projects used for Windows -based and Web-
based applications.

n Configure your installation process by using the Visual Studio .NET editors.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Deploying Windows-based
and Web-based applications
is actually a very similar
process.

 Module 10: Deploying Applications 19

Creating a Merge Module Project

n Never Installed Directly – Included in Client Application
Deployment Project

n Contains

l DLL

l Any dependencies and resources

l Information for the Windows Installer

n Store One Component Only in One Merge Module

n If Component Changes, Create a New Merge Module

After you create the strong-named assembly, you need to package it within a
merge module for it to be included in the deployment project for a client
application. The merge module provides you with a standard way of
distributing components and ensuring that the correct version is installed.

The merge module is never installed directly, but it is distributed within a
Windows Installer project. It includes the .dll file, any dependencies, any
resources, and any setup logic. This method of deployment ensures that
whenever this shared component is used, it is installed on the target computer in
the same way. It also contains information that the Windows Installer database
uses to determine when you can safely remove a component during application
removal.

To package a component assembly, complete the following steps:

1. Create your component and build the .dll.

2. Add a merge module project to your solution.

3. Add the component to the Common Files folder or the global assembly
cache.

4. Build the merge module project.

5. Add the merge module project to a Windows-based or Web-based setup
project.

Topic Objective
To explain how to create
merge module projects for
packaging components for
distribution.

Lead-in
After you create the strong-
named assembly, you need
to package it within a merge
module for further
deployment with the client
application.

20 Module 10: Deploying Applications

Lab 10.1: Packaging a Component Assembly

Objectives
After completing this lab, you will be able to create a merge module project.

Prerequisites
Before working on this lab, you must have:

n Knowledge of the merge module project template.

n Knowledge of the deployment editors.

n Knowledge of the setup project template for Windows-based applications.

Scenario
In this lab, you will create a merge module project to package a component
assembly.

Estimated time to complete this lab: 15 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create a
public-private key pair for an
assembly, and then create a
merge module project that
will contain the assembly.

Explain the lab objectives.

 Module 10: Deploying Applications 21

Exercise 1
Packaging the Component Assembly

In this exercise, you will create a strong name for a component assembly and
then package the component in a merge module project that is ready for
deployment with the client application.

å To attach the key pair to the assembly

1. Open Visual Studio .NET.

2. On the File menu, point to Open, and then click Project.

3. Browse to the install folder\Labs\Lab101\Starter\Component folder, click
Component.sln, and then click Open.

4. In Solution Explorer, right-click Component, and then click Properties.

5. Under Strong Name, click the Generate strong name using check box.

6. Click Generate Key, and then click OK.

7. Build the component.

å To create the merge module project

1. In Visual Studio .NET, on the File menu, point to Add Project , and then
click New Project.

2. In the Project Types pane, click Setup and Deployment Projects.

3. In the Templates pane, click Merge Module Project. Set the location to
install folder\Labs\Lab101\Starter, and then click OK.

4. In the File System Editor, right-click the Common Files Folder, point to
Add, and then click Project Output.

5. In the Add Project Output Group dialog box, select Primary output and
Content Files, and then click OK.

6. On the Build menu, click Build MergeModule1.

7. Save all files, and close Visual Studio .NET.

å To verify that the package has been created

• Open Windows Explorer, browse to the install folder\Labs\
Lab101\Starter\MergeModule1\Debug folder, and verify that
MergeModule1.msm has been created.

22 Module 10: Deploying Applications

Creating a Setup Project

n Creates a Blank Setup Project with Relevant Folders in
File System Editor

n Windows-Based
Application

l Application Folder

l Global Assembly Cache

l User’s Desktop

l User’s Programs Menu

n Web-Based Application

l Global Assembly Cache

l Web Application Folder

You can use the Setup Project and Web Setup Project templates to create
Windows Installer packages for Windows-based and Web-based applications,
respectively. You specify which of these project types you want to use when
you create a new project in Visual Studio .NET. You can also use the Setup
Wizard to lead you through the process of gathering the necessary information
resulting in the required project type.

Topic Objective
To explain how to create a
setup project.

Lead-in
You can use the New
Project dialog box to select
a project template for your
setup project.

 Module 10: Deploying Applications 23

Both project types start in the File System Editor window, which you use to
specify where to install the included files on the target computer. You can
allocate files, folders, shortcuts, and components to these folders. For example,
you can include a ReadMe.htm or a merge module project containing a shared
component in these folders. In addition to using the default folders, you can
also use a predetermined set of special folders (for example the Windows
folder), and you can also create your own subfolders.

Windows-Based Setup Project
When you create a setup project for a Windows-based application, you are
given a set of default folders.

Folder name Description

Application Folder Where the user specifies that the application is to be

installed on the target computer, the application is installed
in the Program Files\Manufacturer\ProductName folder by
default. Use this folder for the standard files used to run the
application.

Global Assembly Cache
Folder

The cache used for shared components.

User’s Desktop Use this folder to create desktop shortcuts for the
application. When the user installs the application, they can
choose whether this application is for all users or just
themselves, which determines where this folder is located.

User’s Programs Menu Use this folder to create Start menu shortcuts for the
application. When users install this application, they can
choose whether this application is for all users or just
themselves, which determines where this folder is located.

Web Setup Project
A Web setup project also presents you with a set of folders, but these are
different because of the differences in the base project type.

Folder name Description

Global Assembly Cache Folder The cache used for shared components

Web Application Fo lder Use this to place files in the default folder for the
Web application. By default this will be
http://ComputerName/ProductName .

24 Module 10: Deploying Applications

Using the Editors

n Registry

n File Types

n User Interface

n Custom Actions

n Launch Conditions

In addition to the File System Editor, you can use a range of other editors to
further define your setting for the installation process. You can access these
editors by using the toolbar buttons in Solution Explorer, as shown below:

Registry
This gives you access to the commonly used registry hives and keys, such as
HKEY_CURRENT_USER \Software and HKEY_LOCAL_MACHINE\
Software. These vary according to whether your application is a Windows-
based or Web-based application. In this editor, you can define your own keys
and write their default values during the installation process.

File Types
This editor allows you to define new file types to be configured on the target
computer and the actions associated with those types.

Topic Objective
To discuss the different
editors included in the setup
projects for Windows-based
and Web applications.

Lead-in
In addition to the File
System Editor, there are
other editors that allow you
to further customize the
setup of your application.

 Module 10: Deploying Applications 25

User Interface
This editor lists the windows in the Installation Wizard that the user sees and
allows you to customize the messages and images displayed in them. You can
customize both the standard and administrative installation programs.

You can also add extra dialog boxes to the installation process. For example,
you can request user preferences with text boxes and option buttons, request
user information for registration purposes, or display license agreements.

Custom Actions
This allows you to include custom actions within your main setup program.
These can be actions performed at install, commit, rollback or uninstall time.
They can include running any executable file, .dll, or script file; adding users to
or removing users from a database; or adding a support contact to the address
book in Microsoft Outlook®.

Launch Conditions
This editor allows you to define conditions for installing the application or
performing custom actions. For example, if a database is not present on the
server, you will not want to add users to it and may not want to install the
application. You can check for files, registry keys, and Windows Installer
installations. You can also customize the message given to the user if the
condition is not satisfied.

26 Module 10: Deploying Applications

Creating Installation Components

n EventLog

n MessageQueue

n PerformanceCounter

n Service

n ServiceProcess

When you are developing an application, you often use Windows resources
such as event logs and message queues. These types of objects are available to
you on the Components tab of the Visual Basic .NET toolbox.

The Visual Studio .NET installation process allows you to create these
components on the target computer as part of your application installation
process. You accomplish this by using installation components.

You can set the properties of any component. These properties include elements
such as the name of an existing message queue or name of the log. When you
want to deploy your application, you can create ProjectInstaller files that copy
all the settings for your component and recreate it on the target computer at
installation time.

Topic Objective
To explain how to create
installation components.

Lead-in
You may also need to
include Windows resources
within your setup…

 Module 10: Deploying Applications 27

Deploying the Application

n Windows-Based Setup Project

l Copies all files

l Registers components

l Performs other installation tasks

n Web Setup Project

l Copies all files

l Registers components

l Creates a Web application

After you configure settings using the editors in Visual Studio .NET for your
custom setup program, you can build the project ready for deployment. Because
this is a standard Visual Studio .NET project, you can build or deploy the
project in the usual ways, although building a Visual Ba sic solution will not
build any setup projects included in it.

Building the project creates an .msi file that you distribute to users so that they
can run the setup program for your application. To install the application, you
can run the .msi file on the target computer or click Install on the Project menu.

Windows-Based Setup Project
Installing a Windows-based application copies all the specified files to the
appropriate locations on the target computer, creates any shortcuts that are
specified, adds registry entries, creates file types, and creates any installation
components included in the project.

Web Setup Project
When you install a Web project, all the actions performed are the same as those
performed during the installation of a Windows-based project. The Web
application is also created and configured within IIS.

Topic Objective
To learn how to deploy the
application after the setup
project is complete.

Lead-in
After you configure your
setup using the editors, you
are ready to compile your
setup project and deploy the
application.

28 Module 10: Deploying Applications

Demonstration: Deploying a Web-Based Application

In this demonstration, you will learn how to use the Setup Wizard to create a
deployment project for a Web-based application. You will also learn how to use
the Launch Conditions Editor to verify that a database is present on the target
computer before installing the application.

Topic Objective
To demonstrate how to
deploy a Web-based
application.

Lead-in
This demonstration shows
how to deploy a Web-based
application.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

Delivery Tip
Ensure that students
understand that this is a
simple application created
for demonstration purposes.
It is the solution to Lab 7.1
of Course 2373A,
Programming with Microsoft
Visual Basic .NET
(Prerelease).

 Module 10: Deploying Applications 29

Lab 10.2: Deploying a Windows-Based Application

Objectives
After completing this lab, you will be able to:

n Create a Windows Installer project.

n Deploy a Windows-based application.

Prerequisites
Before working on this lab, you must have:

n Completed Lab 10.1.

n Knowledge of the deployment editors.

n Knowledge of the setup project template for Windows-based applications.

Scenario
In this lab, you will deploy a Windows-based application. You will begin by
creating a Windows Installer package that includes the merge module that you
created in the previous lab and the client application. Then, you will deploy the
application and ensure that it installs all sections successfully.

Estimated time to complete this lab: 45 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will create a
setup project for a Windows-
based application and test
the resulting Windows
Installer file.

Explain the lab objectives.

30 Module 10: Deploying Applications

Exercise 1
Creating a Windows Installer Project

In this exercise, you will create a Windows Installer project for a client
application. This will include the merge module that you created in the previous
lab. You will create shortcuts for the application on the desktop and Programs
menu and include a ReadMe file in the distribution.

å To reference the component
1. Open Visual Studio .NET.

2. On the File menu, point to Open, and then click Project.

3. Browse to the install folder\Labs\Lab102\Starter\Customers folder, click
Customers.sln, and then click Open.

4. In Solution Explorer, right-click Customers, and then click Add Reference .

5. Click Browse, browse to the install folder\Labs\Lab102\Starter \
Component\bin folder, click Component.dll, click Open, and then click
OK.

6. View the properties of this component and verify that it is a strong-named
assembly.

7. Run the application to test that it functions correctly.

å To create a Windows Installer project

1. On the File menu, point to Add Project, and then click New Project .

2. In the Project Types pane, click Setup and Deployment Projects.

3. In the Templates pane, click Setup Project. Set the location to
install folder\Labs\Lab102\Starter, and then click OK.

4. In Solution Explorer, right-click Setup1, point to Add, and then click
Merge Module.

5. Browse to the install folder\Labs\Lab102\Starter\MergeModule1\Debug
folder, click MergeModule1.msm, and then click Open.

6. In the File System Editor, open the Application Folder. Right-click the
folder, point to Add, and then click File. Browse to the install folder\
Labs\Lab102\Starter\Customers\bin folder, click Customers.exe, and then
click Open.

 Module 10: Deploying Applications 31

å To customize the installation

1. In the File System Editor, open the User’s Desktop folder. Right-click in the
right hand pane and click Create New Shortcut.

2. In the Select Item in Project dialog box, open the Application Folder, click
Customers.exe, and then click OK.

3. In the Properties window, change the name of the shortcut to Customers.

4. Use the same method to create a shortcut in the User’s Programs Menu.

5. Right-click the Application Folder, point to Add, and then click File.

6. Browse to the install folder\Labs\Lab102\Starter folder, click ReadMe.rtf,
and then click Open.

7. On the Solution Explorer toolbar, click User Interface Editor.

8. Under Install, right-click Start, and then click Add Dialog.

9. In the Add Dialog dialog box, click Read Me, and then click OK.

10. Select the new Read Me dialog box in the editor.

11. In the Properties window, in the ReadMeFile property drop-down, click
(Browse…). In the Select Item in Project dialog box, open the
Application Folder, click ReadMe.rtf, and then click OK.

å To build the project
1. On the File menu, click Save All.

2. On the Build menu, click Build Setup1.

3. When the project is successfully built, quit Visual Studio .NET.

32 Module 10: Deploying Applications

Exercise 2
Running the Installation

In this exercise, you will run the Windows Installer project that you created in
the previous exercise and verify that it installs correctly.

å To run the installation program
1. Open Windows Explorer.

2. Browse to the install folder\Labs\Lab102\Starter\Setup1\Debug folder, and
then double-click Setup1.msi.

3. Follow the setup program, accepting the default options.

å To verify the installation

1. Minimize all windows, and check that there is a shortcut to your application
on the desktop.

2. On the Programs menu, click Customers , and verify that the application
functions correctly.

3. Quit the application.

å To remove the application

1. Open Control Panel, and then double-click Add/Remove Programs.

2. Click Setup1 , and then click Remove . Confirm that you want to remove the
application.

3. After the removal is complete, verify that the shortcuts and application
folder have been removed.

 Module 10: Deploying Applications 33

Review

n Describing Assemblies

n Choosing a Deployment Strategy

n Deploying Applications

1. Name the four ways of distributing a Visual Studio .NET project and
describe what each is used for.

XCOPY deployment – for simple stand-alone applications

Copy Project deployment— for copying a Web project directly to the
Web server

Windows Installer— for deploying Windows -based and Web-based
applications

Merge Module— for packaging reusable, shared components

2. How do you create a strong-named assembly?

Use Sn.exe to create a public-private key pair and apply it to the
assembly through the project property pages or use the Generate Key
button in the project property pages.

3. Describe the use of the Launch Conditions Editor.

The Launch Conditions Editor allows you to define certain conditions
under which the installation of an application fails, for example, the
absence of a required database on a server.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

THIS PAGE INTENTIONALLY LEFT BLANK

