

Contents

Overview 1

Deciding Whether to Upgrade 2

Options for Upgrading 7

Recommendations 11
Performing the Upgrade 13

Demonstration: Using the Upgrade Wizard 22

Review 23

Module 11: Upgrading
to Visual Basic .NET

This course is based on the prerelease version (Beta 2) of Microsoft® Visual Studio® .NET
Enterprise Edition. Content in the final release of the course may be different from the
content included in this prerelease version. All labs in the course are to be completed with
the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 11: Upgrading to Visual Basic .NET iii

Instructor Notes

This module provides students with the knowledge needed to decide whether to
upgrade existing Microsoft® Visual Basic® 6.0–based applications and
describes the options that are available for upgrading. Students will receive
recommendations for which types of applications to upgrade and which to leave
alone. Finally, they will learn the tasks that are necessary bef ore and after using
the Visual Basic Upgrade Wizard and view a demonstration of the wizard.

After completing this module, students will be able to:

n Make an informed decision about whether to upgrade an application.

n Describe the various upgrade options available.

n Use the Upgrade Wizard.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_11.ppt

n Module 11, “Upgrading to Visual Basic .NET”

Preparation Tasks
To prepare for this module, you should:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstration.

Presentation:
60 Minutes

Lab:
00 Minutes

iv Module 11: Upgrading to Visual Basic .NET

Demonstration
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Using the Upgrade Wizard
å To review the application

1. Open Visual Basic version 6.0, and open the file Invoices.vbg from the
install folder\DemoCode\Mod11 folder.

2. Describe the two projects in the project group, and give a synopsis of each
of the classes and its purpose.

3. Step through the running application, explaining each of the main features.

4. Close the running application, and close Visual Basic version 6.0.

å To upgrade the user interface

1. Open Visual Basic .NET, and open the file InvoicesUI.vbp from the
install folder\DemoCode\Mod11 folder.

2. This will invoke the Upgrade Wizard. Accept the defaults on all pages,
explaining the options that are available.

å To upgrade the data access tier

1. On the File menu, point to Add Project, and then click Existing Project.
Select Invoices.vbp from the install folder\DemoCode\Mod11 folder, and
click Open.

2. This will invoke the Upgrade Wizard. Accept the defaults on all pages,
explaining the options that are available.

3. Save the solution.

å To update references

1. Remove the Interop.Invoices_1_0 reference from the InvoicesUI project.

2. Right-click References, and then click Add Reference . On the Projects tab
click Invoices. Click Select, and then click OK.

 Module 11: Upgrading to Visual Basic .NET v

å To review the upgraded application

• Run the application, demonstrating that the code is now functioning as
expected.

å To review the issues identified by the Upgrade Wizard

1. Review the comments added to each of the classes in the Invoices project.
Note the hyperlinks to Help topics.

2. Review comments in the modules of the InvoicesUI project.

3. If time allows, go through and make appropriate changes to the code, using
the hyperlinks for further information about the issues.

å To discuss further modifications

• If time allows, discuss the other options available for further enhancements.
These are mentioned in the student notes and can lead to a class discussion.

vi Module 11: Upgrading to Visual Basic .NET

Module Strategy
Use the following strategy to present this module:

n Deciding Whether to Upgrade

In this lesson, you will discuss the advantages and disadvantages of
upgrading an application created in Visual Basic 6.0 to Visual Basic .NET.
You will talk about the advantages— such as enhanced scalability, improved
performance, and ease of deployment— and compare these to the
disadvantages of time and money. This is obviously a subjective issue
because no two projects will ever have the same advantages and costs, but
the goal of the lesson is to make students aware of the factors that they need
to consider.

n Options for Upgrading

This lesson describes the three options for upgrading: full upgrade, partial
upgrade, and full rewrite.

n Recommendations

This is a single slide that outlines Microsoft’s recommendations for the
upgrading of different types of applications.

n Performing the Upgrade

This lesson covers the details of the actual upgrade process. It begins by
discussing what you need to do to the Visual Basic 6.0–based application to
prepare it for the upgrade. These changes ensure that the Upgrade Wizard
can maximize its output.

You will then discuss how to use the Upgrade Wizard and what the resulting
code and project will look like. Remember that you have spent the whole
course discussing Visual Basic .NET and that the goal of this topic is to
point out the upgrade-specific issues, not the general Visual Basic .NET
code. You will also discuss the lists of problematic pieces of code that the
wizard creates, including the Upgrade Report and Task List.

Finally, you will demonstrate the Upgrade Wizard. If time allows, this
demonstration can lead into a class discussion about further possible ways to
enhance the project.

 Module 11: Upgrading to Visual Basic .NET 1

Overview

n Deciding Whether to Upgrade

n Options for Upgrading

n Recommendations

n Performing the Upgrade

As you have seen throughout this course, there are some fundamental changes
in Microsoft® Visual Basic® .NET version 7.0. These changes are necessary
because Visual Basic .NET is a significant upgrade that takes full advantage of
the Microsoft .NET Framework.

Because of these changes, you will find that upgrading applications to
Visual Basic .NET might take time and effort, but it does allow you to take
advantage of the new features in the .NET Framework. The Visual Basic
Upgrade Wizard has been provided as a step in the upgrade process to help you
upgrade, but there are tasks that you should complete both before and after its
use.

In this module, you will learn the factors you must consider when deciding
whether to upgrade an existing application, the options you have for upgrading,
and how to use the Upgrade Wizard.

After completing this module, you will be able to:

n Make an informed decision about whether to upgrade an application.

n Describe the various upgrade options available to you.

n Use the Upgrade W izard.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about upgrading
applications created in
Visual Basic 6.0 to
Visual Basic .NET.

2 Module 11: Upgrading to Visual Basic .NET

u Deciding Whether to Upgrade

n Advantages Gained

n Cost Incurred

n Ease of Upgrade

You must consider various factors when deciding whether to upgrade an
application. In some situations, the advantages gained from porting the
application to the .NET Framework will greatly outweigh the costs involved. In
other situations, you might decide that the advantages are not worth the
investment. Upgrading is not a necessity, and you should carefully examine the
advantages and disadvantages before starting the process.

After completing this lesson, you will be able to:

n Evaluate the advantages and disadvantages of the upgrade process.

n Identify how to decide when to upgrade your applications to
Visual Basic .NET.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Upgrading an application is
not a necessity; you must
examine the advantages
and disadvantages of doing
so before deciding to
upgrade.

 Module 11: Upgrading to Visual Basic .NET 3

Advantages Gained

n Scalability

n Performance

n Deployment

n Access to Rich Set of Base Classes

n Better Debugging

n Solves DLL Conflicts

n Maintenance

The .NET Framework provides many benefits to the application developer that
may enhance applications created in Visual Basic version 6.0.

Advantages
Three major advantages upgrading your application to Visual Basic .NET
provides are:

n Scalability

ADO .NET enhances scalability by means of the disconnected data
architecture, which reduces the number of concurrent database connections
necessary, thereby reducing the overhead needed to run the application.

ASP .NET’s state management system improves upon that of Active Server
Pages (ASP). Session state can be shared among many servers in a Web
farm, allowing for greater scalability.

n Performance

ADO .NET is a simplified version of Microsoft ActiveX® Data Objects
(ADO). It is designed around Extensible Markup Language (XML) to work
seamlessly with disconnected data. The DataReader object is designed for
speed and greatly increases the performance of data intensive applications.

ASP .NET has improved performance over ASP and other Web
development technologies. ASP .NET is a compiled .NET-based
environment, which will run faster than existing applications, and allows
you to use early binding throughout your applications.

Topic Objective
To discuss the advantages
that can be gained from
upgrading Visual Basic 6.0–
based applications to
Visual Basic .NET.

Lead-in
Upgrading your
Visual Basic 6.0– based
applications to
Visual Basic .NET may
result in improved
performance and scalability.

Delivery Tip
Remind students that there
are many advantages to
using the .NET Framework,
but here we are considering
the main advantages to
upgrading an existing
application.

4 Module 11: Upgrading to Visual Basic .NET

n Deployment

Deployment is greatly simplified in the .NET Framework. Depending on the
complexity of your application, deployment can entail running an
application directly from a server, using XCOPY to copy the application to
a workstation or Web server, or installing by using Microsoft Windows®
Installer.

Other advantages include:

n Maintenance

n Access to Rich Set of Base Classes

n Better Debugging

n Solves DLL Conflicts

 Module 11: Upgrading to Visual Basic .NET 5

Cost Incurred

n Time to Upgrade May Trade-Off Against Future
Maintenance Time

n May Require Redesign, As Well As Upgrading and
Recoding

n Financial Costs Can Be Spread by Upgrading an
Application Section by Section

The costs you may incur in upgrading an application can be measured in terms
of time, effort, and ultimately finance.

It will take you time to upgrade your applications from Visual Basic 6.0 to
Visual Basic .NET; however, that time may actually recoup itself in the reduced
maintenance time associated with the upgraded application or be outweighed by
the benefits obtained by the upgrade. Visual Basic .NET –based applications can
require less maintenance because of the improvements associated with
the .NET Framework. XCOPY deployment ends DLL conflicts.

Some applications will gain little benefit from simply upgrading the existing
application to Visual Basic .NET. These include applications that may have
been upgraded through various versions of Visual Basic and never redesigned
to take full advantage of the current systems architecture. The costs of
redesigning an application will greatly increase the overall cost, and may be a
deciding factor in your choice.

Some application architectures lend themselves to a gradual upgrade process
over a period of time. For example, an application using a number of classes
that contain data access code can be upgraded in a number of steps. First you
can upgrade the user interface, then you can upgrade the middle-tier
components, and then you can recode the existing ADO code to ADO .NET in
the data tier.

Topic Objective
To discuss the potential
costs of upgrading an
application to
Visual Basic .NET.

Lead-in
Costs can be measured in a
number of ways…

6 Module 11: Upgrading to Visual Basic .NET

Ease of Upgrade

n Modularity of Code

n Project Types

n Control Types

n Language Constructs

There are a variety of factors that will affect how easy it is to upgrade an
application. These include the original application architecture, the modularity
of the code in the application, the types of projects and controls used in
application, and the language constructs used.

Modularity of Code
Because Visual Basic .NET supports object-oriented features not available in
Visual Basic 6.0, it is easier to upgrade modular code than non-modular code. If
an application has been designed in a modular fashion, changes to one
component should not adversely affect another, and this results in a simpler
upgrade path.

Project Types
Visual Basic .NET does not support some of the Visual Basic 6.0 project types,
such as dynamic HTML (DHTML) applications and ActiveX Documents.
These applications cannot be upgraded and should be left in Visual Basic 6.0 or
rewritten in Visual Basic .NET by using Web Forms.

Control Types
Some Visual Basic 6.0 controls are not supported in Visual Basic .NET and will
upgrade to substitute controls. For example, the Shape, Line, and OLE
Container controls are all unsupported and will upgrade to Label controls in
Visual Basic .NET. If your application makes extensive use of these types of
control, it may require more work to upgrade the application to a working
solution.

Language Constructs
Some Visual Basic 6.0 keywords are not supported in Visual Basic .NET. For
example, Option Base, LSet, and GoSub are not supported. Extensive use of
these keywords in your projects will require manual work after the upgrade
process.

Topic Objective
To discuss the factors that
affect the ease of upgrading.

Lead-in
The ease with which an
application can be upgraded
is affected by various
factors, including the
structure of the code, th e
project types involved, and
the language features used.

 Module 11: Upgrading to Visual Basic .NET 7

u Options for Upgrading

n Complete Rewrite

n Complete Upgrade

n Partial Upgrade

There are three options available if you decide to upgrade an existing
application: You can completely rewrite the application, gaining all the benefits
of the .NET Framework. You can use the Upgrade Wizard on all sections of the
application, gaining some of the benefits. Finally, you can do a partial upgrade,
leaving legacy sections in Visual Basic 6.0.

After completing this lesson, you will be able to:

n Identify the three upgrade options.

n Describe the advantages and disadvantages of each upgrade approach.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Once you have decided to
migrate your application to
Visual Basic .NET, you will
then need to determine the
upgrade path to follow.

Delivery Tip
Remind students that the
advantages and
disadvantages listed here
are general guidelines, and
that each project must be
assessed individually.

8 Module 11: Upgrading to Visual Basic .NET

Complete Rewrite

n Advantages

l Best performance

l Best scalability

l Cleanest design

l Reduced code base

l Uses all new features

n Disadvantages

l Labor intensive

l Steep learning curve

l Wasted investment in
existing code

l Introduction of errors

n Use If:

l Upgrading is impractical

l Performance is essential

A complete rewrite of the application is the best way to gain all of the benefits
of the .NET Framework, but this can also be the mos t costly solution. It is most
commonly used when the application contains sections that are not upgradeable
but that need to take advantage of the .NET Framework.

Advantages
n Performance can be improved through the use of new technologies such as

ASP .NET and ADO .NET.

n Scalability is increased when using ASP .NET rather than ASP or other
Visual Basic 6.0 Web project types.

n If you rewrite your application from the very beginning, you will have the
chance to redesign it to take advantage of the object-oriented features of
Visual Basic .NET.

n Your code base will be reduced due to some of the new features in
Visual Basic .NET; for example, resizing code can be replaced by using the
Anchor properties of a control.

Disadvantages
n Rewriting an application can be labor intensive, as it will potentially involve

software analysts as well as developers.

n Learning Visual Basic .NET by rewriting an application can be very
difficult for those involved. It may be better to start by upgrading
applications and use the knowledge gained from this to learn the product.

n Any existing code that has been written will not be reused, and this results
in wasted investment of the existing code.

Topic Objective
To discuss the advantages
and disadvantages of a
complete rewrite of an
existing application.

Lead-in
Completely rewriting an
application is not the easiest
way to convert an
application to
Visual Basic .NET.

 Module 11: Upgrading to Visual Basic .NET 9

Complete Upgrade

n Advantages

l Improved performance

l Improved scalability

l Preserved investment in
existing code

n Disadvantages

l Some sections may not
upgrade

l Not best performance

n Not As Elegant As a Rewrite

n Use If Time or Resources Are Limited

You will probably find that this is the easiest option for upgrading, but it will
not be a common occurrence. Even if the application is completely upgradeable,
it may not result in the most efficient code, so you are likely to need to revisit
sections anyway.

Advantages
n You will gain performance and scalability from the upgraded sections of the

code.

n You will preserve the earlier investment made in the existing code by
reusing the code.

Disadvantages
n Some sections of the application may not be upgradeable (for example,

ADO code), so this will not take advantage of .NET.

n Some upgraded sections may use COM interoperability to communicate
with the .NET components, resulting in lower performance. Other sections
may use the Visual Basic compatib ility library, again introducing overhead
into the system.

Topic Objective
To discuss the advantages
and disadvantages of a
complete upgrade of an
existing application.

Lead-in
A complete upgrade is
generally easiest, but it is
the least likely of all the
scenarios.

10 Module 11: Upgrading to Visual Basic .NET

Partial Upgrade

n Advantages

l Improved performance

l Improved scalability

l Preserves investment in
existing code

l Quick upgrade, and retain
non-upgradeable code

n Disadvantages

l Use of COM interoperability
adds overhead

l Difficult to maintain

l Difficult to deploy

n Most Likely Option

n COM Interoperability Is Only a Problem If Large Number
of Client Server Calls

A partial upgrade is the most likely option for migrating your application to
Visual Basic .NET. This allows you to upgrade the sections of your code that
will make the most benefit of using the .NET Framework while continuing to
use the ones that will be difficult to upgrade. Sometimes you will use this
method as a progressive upgrade option, allowing you to focus the upgrade
process on small sections of the application at a time.

Advantages
n Performing a partial upgrade can allow you to take advantage of the

particular performance and scalability enhancements in the .NET
Framework that are appropriate to your application.

n It preserves the investment made in your existing code, and allows reuse of
as much or as little as you want.

Disadvantages
n A partial upgrade may result in using COM interoperability to communicate

between COM and .NET components. This may degrade performance.

n Applications that mix Visual Basic 6.0 and Visual Basic .NET are harder to
deploy and maintain than single- language applications.

Topic Objective
To discuss the advantages
and disadvantages of a
partial upgrade of an
existing application.

Lead-in
A partial upgrade is the
most likely option for
migrating your application to
Visual Basic .NET.

 Module 11: Upgrading to Visual Basic .NET 11

Recommendations

n Web Client Server

l Complete upgrade

l ASP to ASP .NET and Web Forms, COM components to .NET
components, and ADO to ADO .NET

n Traditional N-Tier Applications

l Partial upgrade

l Leave client in Visual Basic 6.0

n Enterprise Legacy Applications

l Complete rewrite

l Encapsulate legacy system in Web Service

n Stand-Alone Windows-based Applications

l Little benefit to upgrading

You have seen that the various upgrade options will lend themselves to
particular application architectures. The following recommendations can be
used as general guidelines to help you decide on the best upgrade process for
your particular needs.

Web Client Server
This type of application will typically use ASP as a front end, business logic in
COM components in the middle tier, and ADO code for the data access layer. It
will gain the greatest benefits from upgrading to Visual Basic .NET because it
will be performance driven and need to be extremely scalable. All the
technologies used in Visual Basic 6.0 will correspond directly to technologies
available in Visual Basic .NET, making the upgrade path relatively simple.

Traditional N-Tier Applications
This type of application will be fairly similar to the thin client server, but it will
include some of the logic on the client side. The middle tier and data tier will
benefit from upgrading, but unless the front end is extremely simple, it is best
left as a Visual Basic 6.0–based application.

If the main goal of the upgrade is to improve performance, then you should
rewrite any ADO code to ADO .NET.

Topic Objective
To provide some general
guidelines about which type
of upgrade to apply to
various types of
applications.

Lead-in
You have seen the upgrade
options available. Now let’s
look at applying these to
different application
architectures.

12 Module 11: Upgrading to Visual Basic .NET

Enterprise Legacy Applications
This type of application will typically be client/server with a legacy data source
at the back end. They are perfect examples of applications that will benefit from
being rewritten in Visual Basic .NET. You can encapsulate the legacy system in
a managed component and expose it to many clients by using a Web Service.

Rewriting sections of these applications will provide the greatest improvements
in scalability and performance.

Stand-Alone Windows-based Applications
These applications might benefit from the Windows Forms package and they
can provide excellent environments to learn the upgrade process.

 Module 11: Upgrading to Visual Basic .NET 13

u Performing the Upgrade

n Preparing for the Upgrade

n Using the Upgrade Wizard

n Results of the Upgrade Wizard

n Completing the Upgrade

You can use the Upgrade Wizard to assist you in upgrading your
Visual Basic 6.0–based applications to Visual Basic .NET. Opening a
Visual Basic 6.0–based application in Visual Basic .NET will create a new
application and leave the existing application as it is.

Because of the differences between the two products, the Upgrade Wizard
cannot perform the entire process, but it can simplify some of the tasks involved.

After completing this lesson, you will be able to:

• Identify tasks you need to perform before, during, and after using the
Upgrade Wizard.

The Upgrade Wizard should only be used to upgrade applications created
in Visual Basic 6.0. If you want to upgrade projects created in earlier versions
of Visual Basic, open and compile them in Visual Basic 6.0 before using the
wizard.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
The Upgrade Wizard is
provided to aid you in the
upgrade process.

Delivery Tip
Mention GIGO – garbage in,
garbage out. Modifying
Visual Basic 6.0 code will
optimize the output of the
wizard. Unmodified code will
result in potentially more
complex post-wizard tasks.

Note

14 Module 11: Upgrading to Visual Basic .NET

Preparing for the Upgrade

n Early Binding

n Null Propagation

n Date Variables

n Constants

n Data Access

There are certain tasks that you can perform before using the Upgrade Wizard
to maximize the usefulness of its output. These are tasks that make the wizard
able to upgrade what would otherwise be ambiguous code.

It is easier to modify your Visual Basic 6.0 code and allow the wizard to
upgrade it than to need to address the issues after the upgrading has occurred.
You can identify these issues by upgrading your application, reading the
comments added by the wizard, and then modifying your Visual Basic 6.0–
based project before beginning the upgrade process again.

Early Binding
Late-bound objects can cause problems during the upgrade process when
default properties are resolved, and when calls to updated properties, methods,
and events are upgraded.

Example
In the following example, a Label object is declared as type Object, meaning
that the Upgrade Wizard is unable to upgrade the Caption property to the
Visual Basic .NET equivalent of the Text property:

Dim objLabel as Object
Set objLabel = Form1.Label1
objLabel.Caption = "Enter your password" 'Cannot be upgraded

To avoid this, you should declare all of your variables as the explicit type.

Dim objLabel as Label
Set objLabel = Form1.Label1
objLabel.Caption = "Enter your password" 'Can be upgraded

Topic Objective
To discuss the tasks that
should be performed before
using the Upgrade Wizard.

Lead-in
There are certain changes
you can make to your Visual
Basic 6.0 code to maximize
the usefulness of the output
of the Upgrade Wizard.

 Module 11: Upgrading to Visual Basic .NET 15

Null Propagation
Null propagation is the behavior in Visual Basic 6.0 that dictates that if you add
Null to another data type, the result will always be Null.

Example
a = Null
b = 5
c = a + b

In Visual Basic 6.0, the above code will result in variable c evaluating to Null.
In Visual Basic .NET, this code will return an invalid cast exception. To avoid
this error, you should always check the contents of a variable that could
potentially be Null prior to performing operations on it.

The following code shows how to write your Visual Basic 6.0 code to ensure
compatibility with Visual Basic .NET:

a = Null
b = 5
If IsNull (a) Then
 ' Take appropriate action
Else
 c = a + b
End If

The Upgrade Wizard will upgrade the Visual Basic 6.0 Null constant to
System.DBNull.Value and the IsNull function used in Visual Basic 6.0 to
IsDbNull.

Date Variables
In Visual Basic 6.0, dates are stored internally as Double, so you can declare
them as either Date or Double, and implicit type conversion will occur. In
Visual Basic .NET, dates are not stored internally as Double, so they need to be
declared as explicit Date types.

Because there is no way for the Upgrade Wizard to determine which Doubles
were intended as Dates, it cannot upgrade dates declared as Doubles. To avoid
this problem when upgrading, declare all dates explicitly in Visual Basic 6.0 as
the Date data type.

For Your Information
Using the concatenation
operator (&) in Visual Basic
6.0 does not result in Null
propagation.

Note

16 Module 11: Upgrading to Visual Basic .NET

Constants
Some of the underlying values of intrinsic Visual Basic constants have changed.
If your Visual Basic 6.0 code uses the constants, the Upgrade Wizard will
automatically upgrade them to the new constants storing the new underlying
values; however, if you have used explicit values in your code, the Upgrade
Wizard will leave these unaltered, and errors may occur.

The following example shows how to correctly use Visual Basic constants in
your Visual Basic 6.0 code:

Example
'Incorrect use of underlying values
Response = MsgBox("Do you want to continue?", 4)
If Response = 6 Then
 'Do something
End If

'Correct use of predefined constants
Response = MsgBox("Do you want to continue?", vbYesNo)
If Response = vbYes Then
 'Do something
End If

Data Access
The only forms of supported data binding in Visual Basic .NET are ADO and
ADO .NET. For this reason, it is recommended that you upgrade all Data
Access Object (DAO) or Remote Data Objects (RDO) data binding to ADO in
your Visual Basic 6.0 applications before upgrading to Visual Basic .NET.

DAO, RDO, ADO and ADO .NET code are all supported in Visual Basic .NET,
so you do not need to change these before upgrading. However, you may decide
to take advantage of the disconnected ADO .NET architecture and upgrade your
code to ADO .NET after the upgrade process has been completed.

 Module 11: Upgrading to Visual Basic .NET 17

Using the Upgrade Wizard

n Open a Visual Basic 6.0– based Project in Visual Basic
.NET

Once you have prepared your application for upgrade, use the Upgrade Wizard
to perform the process. It is recommended that you begin by upgrading the user
interface tier of your application, and work back through the other tiers.

You can launch the Upgrade Wizard by opening a Visual Basic 6.0–based
application in Visual Basic .NET. This will gather the information necessary to
upgrade your application.

The Upgrade Wizard will not modify your original application; it will create an
upgraded copy at the location you specify.

Topic Objective
To discuss how to use the
Upgrade Wizard.

Lead-in
The Upgrade Wizard will
gather the information
necessary to upgrade your
application.

18 Module 11: Upgrading to Visual Basic .NET

Results of the Upgrade Wizard

n Language Changes

l Code upgraded to be syntactically correct in
Visual Basic .NET

n Form Changes

l Most controls will upgrade

n Other Changes

l Other functionality will be upgraded to similar objects

When you have upgraded your application, the resulting project will still be
very similar to the original.

Anything that can be upgraded is upgraded, and anything that cannot be
upgraded, or anything that is ambiguous, will be marked with comments and
entered in the Upgrade Report. Links are created to relevant topics in the
documentation files to help you resolve any outstanding issues.

Some Visual Basic 6.0 functions do not have equivalents in Visual Basic .NET,
and these will be retained through use of compatibility functions.

Language Changes
The Upgrade Wizard modifies the code where possible to take into account the
syntax changes in Visual Basic .NET. This includes:

n Resolving parameterless default properties.

n Adding the ByRef keyword to procedure parameters.

n Changing property procedures to the new syntax.

n Adding parentheses to all function calls.

n Changing all data types to their new equivalents.

Topic Objective
To discuss the results of the
Upgrade Wizard.

Lead-in
The Upgrade Wizard does
not change the basic
structure of your projects.

Delivery Tip
Remember that the Upgrade
Wizard creates a new
project and leaves the
original project alone.

 Module 11: Upgrading to Visual Basic .NET 19

Form Changes
Visual Basic forms will be upgraded to Windows Forms, although a few
controls cannot be upgraded because they have no counterpart in
Visual Basic .NET. These include the following, which all upgrade to
Visual Studio® .NET Label controls:

n OLE Container control

n Shape controls

n Line controls

Other Changes
Other functionality in applications created in Visual Basic 6.0 may not have a
direct counterpart in Visual Basic .NET but will be left as is or upgraded to
similar objects. For example:

n Resource files will upgrade to .resx files that can store any .NET data type.

n Web classes will not upgrade.

n ADO data environments will not upgrade.

n ADO code and ADO data binding will remain unchanged.

n Property pages are no longer used in Visual Basic .NET.

20 Module 11: Upgrading to Visual Basic .NET

Completing the Upgrade

n Upgrade Report

n Upgrade Comments

n Task List Entries

n Testing

n Other Tasks

The Upgrade Wizard also identifies any potential issues in the upgraded project.
It creates an Upgrade Report that lists all potential problems, and adds tasks to
the Task List for changes you need to make. These changes are also marked
with comments in the code.

Upgrade Report
The Upgrade Report lists all upgrade errors and warnings, grouped by the file in
which they occur. It contains details of the issue, the location, and the Help
topic associated with the issue. This topic will explain why there is a problem
with the code and what you should do to correct the code.

Upgrade Comments
The Upgrade Wizard adds fours types of comments to your code:

n UPGRADE_ISSUE

These mark any lines of code that will prevent your code from compiling.

n UPGRADE_TODO

These mark any code that will compile but that will still cause a run-time
error.

n UPGRADE_WARNING

These mark code that will compile but that may cause run-time errors.

n UPGRADE_NOTE

These mark code that will compile and run but for which the changes in
Visual Basic .NET may cause unwanted side effects.

The comments also include a hyperlink to the Help topic associated with the
issue.

Topic Objective
To discuss the manual tasks
required to complete the
upgrade process.

Lead-in
Running the wizard is not
the end of the upgrade
process.

 Module 11: Upgrading to Visual Basic .NET 21

Task List Entries
The Task List shows all upgrade comments that you must resolve to ensure the
correct running of your application. This includes Issues, ToDos, and Warnings.
It will also list any other issues in your code that have not been introduced by
the Upgrade Wizard. You can use this list to quickly find all the comments in
the code.

Testing
You must ensure that you complete a full test cycle after the upgrade process, to
check that the application is still functioning as you would expect.

Other Tasks
There are a number of other modifications that you can make to your code to
improve it. The first of these should be done immediately; the rest can be done
in the next phase of the upgrade.

n Replace compatibility functions and controls with .NET code.

These are only provided for convenience during the upgrade process and
should not be used in deployed applications.

n Upgrade ADO code to ADO .NET.

This will take advantage of the benefits of ADO .NET.

n Replace COM components with NET components.

This will reduce the number of managed to unmanaged calls, which will
improve the performance of your application.

n Replace error handling code.

You should replace any existing Visual Basic 6.0 error handling code with
Visual Basic .NET exception handling using Try..Catch blocks to ensure a
more structured approach to your error handling.

22 Module 11: Upgrading to Visual Basic .NET

Demonstration: Using the Upgrade Wizard

In this demonstration, you will see how to upgrade a Visual Basic 6.0
application to Visual Basic .NET. You will see the original Visual Basic 6.0
application, how to use the Upgrade Wizard, and some of the tasks that could
be completed afterwards.

This application is a simple invoice viewing system for the Cargo system. It is
currently running as a Visual Basic 6.0 form-based application, interacting with
class modules providing the data access code.

You will see the projects being upgraded by the Upgrade Wizard and review
the issues identified in the comments and Upgrade Report.

Once the critical issues have been solved, there are other considerations for the
project. All the data access code is ADO and could be upgraded to ADO .NET
to take advantage of the disconnected architecture.

Topic Objective
To demonstrate how to use
the Upgrade Wizard.

Lead-in
Now that you have learned
how to upgrade an
application, let’s watch the
process as it happens.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

Delivery Tip
Ensure that students
understand that this is a
simple application created
for demonstration purposes.
Be sure to discuss with
them the options that are
available to further enhance
an application after they
have used the Upgrade
Wizard and addressed the
major issues.

 Module 11: Upgrading to Visual Basic .NET 23

Review

n Deciding Whether to Upgrade

n Options for Upgrading

n Recommendations

n Performing the Upgrade

1. List two benefits of upgrading an application and how those benefits are
gained.

Scalability can be gained through the use of ASP .NET. Performance
can be improved through the use of ASP .NET and ADO .NET.

2. What is the most commonly followed upgrade path? Why?

Partial upgrade, because a complete rewrite is generally too expensive
and a complete upgrade too impractical.

3. Which upgrade comments are not listed in the Task List? Why?

UPGRADE_NOTE comments are not listed because they only highlight
potential problems, and the code will run without any modifications.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

THIS PAGE INTENTIONALLY LEFT BLANK

