msdn training

Contents

Overview

Describing the Integrated Development
Environment

Creating Visual Basic .NET Projects

Demonstration: Creating a Visual Basic
.NET Project

Using Development Environment Features

Demonstration: Using the Visual Studio
.NET IDE

Debugging Applications
Demonstration: Debugging a Project
Compiling in Visual Basic .NET

Lab 2.1: Exploring the Development
Environment

Review

This course is based on the prerelease version (Beta 2) of Microsoft® Visual Sudio® .NET

Enterprise Edition. Content in the final release of the course may be different from the
content included in this prerelease version. All labs in the course are to be completed with

Module 2: Development
Environment Features

16

29
30
37
38

42
47

the Beta 2 version of Visual Sudio .NET Enterprise Edition.

Microsoft

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e mail address,
logo, person, place or event isintended or should beinferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into aretrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

O 2001 Microsoft Corporation. All rights reserved.

Microsoft, MSDOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visua
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Module 2: Development Environment Features il

Instructor Notes

Presentation:
60 Minutes

Lab:
45 Minutes

This module teaches students some of the overall benefits of using the new
Microsofte Visud Studioe .NET version 7.0 integrated development
environment (IDE) and how to create Visual Basice .NET projects. Students
will try some of the tools that make the IDE so powerful for application
development. They will learn how to debug and compile projects.

After completing this module, students will be able to:
m Describe the overall benefits of the new IDE.

m Describe the different types of Visual Basic .NET projects and their
structures, including their file structures.

= Reference external applications from a project.
= View and set the properties of a project.

m Usethe various windows in the IDE, including the Server Explorer, Object
Browser, and Task List.

= Debug a simple application.

= Build and compile a simple application.

Materials and Preparation

This lesson provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

= Microsoft PowerPointe file 2373A_02.ppt

= Module 2, “Development Environment Features’

Preparation Tasks

To prepare for this module, you should:

s Read dl of the materials for this module.

= Read the instructor notes and the margin notes for the module.
m Practice the demonstrations.

m Complete the labs.

iv Module 2: Development Environment Features

Demonstrations

This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Creating a Visual Basic .NET Project

I To prepare for the demonstration

Open Visua Studio .NET.

£ To usea project template

1.

Create a new project and point out the various project templates available
when creating a Visua Basic .NET project. Remind students of the genera
purpose of each template.

Create a Windows application project named SimpleProject in the
install folder \DemoCode\M od02\SimpleProject folder.

K To analyze the project

1.

4,

Examine the current project hierarchy. Point out the solution, project, and
Forml files.

. Open the project Property Pages dialog box, and then explain al aspects of

the General section under Common Properties such as Assembly name,
Root namespace, and Output type.

Examine the I mportssection. Point out that these project-level imports do
not require an Imports statement in the code.

Close the project Property Pagesdiaog box.

£ To add a project reference

1.

Examine the current list of project references in the Solution Explorer. Point
out some of their properties, such as the location of the assembly .dll files.

. Open the Add Reference diaog box for the project and examine the list

of .NET and COM items listed in the list boxes. Add one of the NET
assemblies such as System.Enter priseSer vices (the reference will not
actually be used in the demonstration, but it can be seen in the Solution
Explorer). Point out that if a COM reference is added, the COM
interoperability mechanism is invoked and should be accepted. Also point

out that there are currently no items on the Projects tab, because no other
projects are loaded into this solution.

Save the project and close Visual Studio .NET.

Module 2: Development Environment Features

Using the Visual Studio .NET IDE

I To prepare for the demonstration

Open Visual Studio .NET, and then open the SimpleProject project created
in the last demonstration (“ Creating a Visua Basic .NET Project”).

I To usethe Solution Explorer
1. Add aclass module to the project. Leave the default name Classl.vb.

n

o g M w

Select the project in the Solution Explorer. On the Project menu, click New
Folder to add a new folder to the project hierarchy. Rename the folder
Classes.

Drag the Classl.vb file to the Classes folder.

Right-click Classl.vb, and then click Exclude From Project.
On the Solution Explorer toolbar, click Show All Files
Right-click Classl.vb, and then click Include In Project.

IZ Touse Server Explorer to create a data connection
1. Open Server Explorer.

2. Click Auto Hide on the Server Explorer toolbar to anchor Server Explorer

to the screen.

To add a data connection to the project, click Connect to Databaseon the
Server Explorer toolbar.

Vv

Enter the following values in the Data Link Propertiesdialog box.
Property Value

Server name localhost

Logon information WindowsNT Integrated security
Database Cargo

Expand the new data connection. Point out the functional similarity to the
Data View window found in previous versions of Microsoft Visua Basic.

I Tousethe Server Explorer to examine the local server
1. In Server Explorer, expand Servers.

2. Expand the instructor machine.

3. Expand and examine the server items, such as Event Logs, SQL Servers,

Performance Counters, and Services.

To start the SQL ServerAgent service, expand the Services item, right-click
SQL Server Agent , and then click Start. Point out how to stop the service if
reguired.

Click Auto Hide to hide Server Explorer.

Vi Module 2: Development Environment Features

I To edit an Extensible Markup Language (XML) file

1. Using Windows Explorer, navigate to the install folder\DemoCode\Mod02
folder.

2. Dragthe Customers.xml file from Windows Explorer to the SimplePr oj ect
node of the tree view in Solution Explorer.

If you drop it anywhere else, it may not be added to the project successfully.
Point out that this copy of the document is stored with the project files.
Double-click Customers.xml in the Solution Explorer to edit the document.
Examine the document in XML view and then Data view.

o g M w

Change the first name of one of the customers by using the editable grid,
and then press ENTER. Confirm the change has taken place by checking the
datain XML view.

7. Saveyour project and close Visual Studio .NET.

Debugging a Project
£ To prepare for the demonstration

Open Visua Studio .NET, and then open the install folder\DemoCode\
Mod02\Debugging\Starter\Debugging.sin solution.

I To set a conditional breakpoint
1. Open the code window for the form.

N

Explain the purpose of the code.
Set a breakpoint on the Button1 _Click procedure definition.

Right click on the breakpoint itself, and in the Breakpoint Properties
dialog box, click Condition. Set the following condition:

> w

iCounter = 4

5. Closethe Breakpoint Properties dialog box.

IZ To step through the code
1. Run the project.

2. When the form appears, click the Begin button on the form. Verify that the

Output window displays the debugging information as a result of the
Debug.WriteL ine statement.

3. Todemonstrate that the condition is not initially met, click Begin three
times until execution halts at the conditional breakpoint.

4. Point out the various debugging windows, including the Locals and
Breakpoints windows, and the value of the iCounter varigble.

5. Step through the entire code by using either the Debug menu or toolbar
before closing the form and stopping the debugging process.

Module 2: Development Environment Features vii

£ To use the Command window

1.

w

© N o g M

Ensure the Command window is activated and that the command prompt (>)
isdisplayed. If it is not, type >cmd and press ENTER.

Use the Debug.Start command to start the debugger.

Click Begin three times to enter debugging mode, and then click the
Command window tab to make it the active window.

Use the immed command to change to Immediate mode.

Type ?iCounter to check the value of the iCounter variable.

Use the >cmd command to change back to Command mode.

Use the Debug.StopDebugging command to end the debugging session.
Use the Exit command to close Visua Studio .NET.

viii Module 2: Development Environment Features

Module Strategy

Use the following strategy to present this module:

Describing the Integrated Development Environment

This lesson is an introduction to the genera benefits of using the
Visua Studio .NET IDE.

The most important aspect of this lesson is that there is only one IDE that is
required to create all types of projects. Students no longer must develop
their components in the Visual Basic IDE and their Web pages in Microsoft
Visual InterDeve or another Web development tool.

Creating Visual Basic .NET Projects

This lesson introduces some of the basic concepts required to create a
Visual Basic .NET project. Many aspects of this lesson are similar to
concepts covered in previous Visua Basic courses, such as project
templates, structures, properties, and references.

This lesson a so introduces assemblies and namespaces, both of which are
fundamental aspects of .NET-compatible development. Explain assemblies
enough to give the students an overall understanding of their purpose,
without going into too much depth. Concepts such as versioning and
security will be covered in Module 10, “Deploying Applications,” in
Course 2373A, Programming with Microsoft Visual Basic .NET
(Prerelease).

The namespaces lesson has a small amount of simple code that you will
need to explain to students. This code defines classes and creates objects
based on those classes. This type of code will be easily understood by all
Visual Basic developers, but advise them that this code will be explained in
Module 5 “Object-Oriented Programming in Visual Basic .NET,” in
Course 2373A, Programming with Microsoft Visual Basic .NET
(Prerelease).

Using Development Environment Features

This lesson introduces the various features of the IDE such as the Solution
Explorer, Server Explorer, Object Browser, Task List, Dynamic Help, XML
editing, and macros. Some of these items are similar to those found in
previous versions of Visual Basic, such as the Solution Explorer and Object
Browser, so you will not have to explain them in detail.

Students should have a basic amount of XML knowledge, but check that
they understand the structure of the XML document, Bookstore.xml, shown
in the demonstration.

Module 2: Development Environment Features iX

Debugging Applications

This lesson begins by discussing breakpoints and how to set them. This will
not be new to most students. However, explain how to set conditional
breakpoints in detail, because this is handled differently in

Visud Basic .NET than in previous versions of Visual Basic.

This lesson discusses the various debugging techniques and debugging
windows that are available. Again, because several of these features are

based on previous versions of Visual Basic, point out the enhancements
rather than explaining each feature in much detail.

The Command window is also discussed, and the slide shows an example of

the window’ s use. Step through the example and point out the various
effects each statement has on the environment.

Compiling in Visud Basic .NET

This lesson begins by looking at how the Task List window assists you in
tracking syntax errors during an attempted compilation. The last dide
discusses the various compilation options available to the developer,
including the possible configuration settings Debug and Release. Be sure

students understand the difference between the two settings. This will affect
the assembly that is generated.

Overview

Topic Objective

To provide an overview of
the module topics and
objectives.

Lead-in

In this module, you will
learn about the

Visual Studio .NET
development environment
and the many powerful
features it provides for
Visual Basic .NET

developers.

Module 2: Development Environment Features

m Describing the Integrated Development Environment
m Creating Visual Basic .NET Projects

m Using Development Environment Features

m Debugging Applications

m Compiling in Visual Basic .NET

1

The Microsofte Visual Studioe .NET version 7.0 integrated devel opment
environment (IDE) provides you with enhancements to many tools found in
previous versions of Microsoft Visua Basice, combined with features found in
other environments, such as Microsoft Visual C++e.

In this module, you will learn the overall benefits of using this new IDE. You
will learn how to create Visual Basic .NET projects, and will try some tools of

the new IDE. Finaly, you will learn how to debug your projects and how to
compile them.

After completing this module, you will be able to:

Describe the overall benefits of the new IDE.

Describe the different types of Visual Basic .NET projects and their
structures, including their file structures.

Reference external applications from your project.
View and set the properties of a project.

Use the various windows in the IDE, including Server Explorer, the Object
Browser, and the Task List.

Debug a simple application.
Build and compile a simple application.

2 Module 2: Development Environment Features

Describing the Integrated Development Environment

Topic Objective
To discuss some overall
benefits of the IDE.

Lead-in

The Visual Basic .NET IDE
provides some significant
benefits over previous
Visual Basic IDEs.

m There Is One IDE for All .NET Projects

m Projects Can Contain Multiple Programming Languages
e Example: Visual Basic .NET and C# in the same project

m The IDE Is Customizable Through “My Profile”

m The IDE Has a Built-in Internet Browser

The Visua Studio .NET IDE provides some significant enhancements to
previous IDEs for Visual Basic.

Thereis one IDE for al Microsoft .NET projects

The Visua Studio .NET IDE provides a single environment where you can
develop all types of .NET applications, from simple applications based on
Microsoft Windowse, to complex n-tier component systems and complete
Internet applications. For example, you no longer need to create your
components in a separate environment from your Internet pages and scripts.

Projects can contain multiple programming languages

Y ou can incorporate multiple programming languages within one solution
and edit all your code within the same IDE. This can aid team development

of a system where parts of the solution are written in Visual Basic .NET,
and other parts are written in C# or other .NET -compatible languages.

The IDE is customizable through My Profile

The IDE is fully customizable through the My Profile configuration section
on the Visual Studio .NET Start Page.

You can select a preexisting profile such as the Visua Basic Developer,
or you can modify each section manually.

Y ou can specify how you want your IDE screen to look and how the

keyboard behaves. Thisis particularly useful if you are used to Visud
Basic version 6.0 keyboard shortcuts for various actions.

You can choose to filter help files based on your preferences.
The IDE has a built-in Internet browser

Y ou can browse the Internet within the IDE, enabling you to ook up online
resources without moving between multiple application windows. This
built-in browser can also display the Visua Studio .NET Help files for easy
access to the relevant documentation.

Module 2: Development Environment Features

€ Creating Visual Basic .NET Projects

Topic Objective
To introduce the topics in
this lesson.

Lead-in

Many concepts in

Visual Basic .NET project
creation will be familiar to
you.

m Choosing a Project Template
= Analyzing Project Structures
= What Are Assemblies?

m Setting Project References

= What Are Namespaces?

m Creating Namespaces

= Importing Namespaces

m Setting Project Properties

3

Many aspects of project development in Visual Basic .NET are similar to those

in previous versions of Visua Basic. You still have arange of project templates

to choose from, you still need to reference other projects and applications, and

you still need to set project properties. Visual Basic .NET provides
enhancementsto these and other aspects of project devel opment.

In this lesson, you will become familiar with the project templates provided by

Visual Basic .NET. After completing this lesson, you will be able to:

Choose the correct template for your project.

Explain how various Visua Basic .NET projects are structured.
Explain what assemblies are and how to create them.

Reference other code from your project.

Create and use hamespaces in your projects.

Use the I mports statement to access objects.

Set various project properties that affect how your application behaves.

4 Module 2: Development Environment Features

Choosing a Project Template

Topic Objective

To discuss the various
Visual Basic .NET project
templates.

Lead-in

As in previous versions of
Visual Basic, you can

choose from a variety of
project templa tes to assist

you in the creation of a new
project.

m Others

= Windows Application

m Class Library

= Windows Control Library

m ASP .NET Web Application / Service / Control Library
m Console Application

= Windows Service

Delivery Tip

Point out that students will
use many of these project
templates during the
remainder of the course.

Visual Basic developers are used to having multiple project templates to choose
from when starting a new project. Visual Basic .NET provides many familiar
templates along with a range of new ones.

Template

Usethistemplateto create:

WindowsApplication
ClassLibrary

Windows Control Library

ASP .NET Web

Application

ASP .NET Web Service

Web Control Library

Console Application
Windows Service

Other

Standard Windows-based applications.

Classlibrariesthat provide similar functionality to
Microsoft ActiveXe dynamic-link libraries (DLLS) by
creating classes accessibleto other applications.

User-defined Windows control projects, which are
similar to ActiveX Control projectsin previousversions
of Visual Basic.

Web applications that will run from an Internet
Information Services (11S) server and can include Web
pages and XML Web services.

Web applicationsthat provide XML Web Servicesto
client applications.
User-defined Web controls that can be reused on Web

pages in the same way that Windows controls can be
reused in Windows applications.

Console applications that will run from acommand line.

Windows servicesthat will run continuously regardless
of whether auser islogged on or not. Previous versions
of Visua Basic require you to use third-party productsor
lowlevel application programming interface (API) calls
to create these types of applications.

Other templates exist for creating enterprise applications,
deployment projects, and database projects.

Module 2: Development Environment Features 5

Analyzing Project Structures

Topic Objective
To discuss the structure of
Visual Basic .NET projects.

Lead-in

Visual Basic .NET projects
contain various types of files
that you use depending on
the type of project you are
creating.

= Solution Files (.sIn, .suo)
m Project Files (.vbproj)
m Local Project Items
o Classes, forms, modules, etc. (.vb)
= Web Project Items
e XML Web services (.asmx)
e Web forms (.aspx)

e Global application classes (.asax)

Each project contains a variety of files unique to the type of project. To
simplify management, the project files are usually stored within the same
project directory.

Solution files (.dln, .suo)

The .gln extension is used for solution files that link one or more projects
together, and are aso used for storing certain global information. These files
are smilar to Visua Basic groups (.vbg files) in previous versions of

Visual Basic. Solution files are automatically created within your

Visual Basic .NET projects, even if you are only using one project in the
solution.

The .suo file extension is used for Solution User Options files that
accompany any solution records and any customizations you make to your
solution. This file saves your settings, such as breakpoints and task items, so
that they are retrieved each time you open the solution.

Project files (.vbproj)

The project file is an Extensible Markup Language (XML) document that
contains references to all project items, such as forms and classes, aswell as
project references and compilation options. Visual Basic .NET project files
use a.vbproj extension, which alows you to differentiate between files
written in other .NET -compatible languages (Microsoft C# uses .csproj).
This makes it easy to include multiple projects that are based on different
languages within the same solution.

6 Module 2: Development Environment Features

Delivery Tip

Explain that you can store
more than one item in the
same file, such as two
classes in a single .vb file.
This allows you to keep
related classes together for
easy maintenance.

Local project items (.vb)

Previous versions of Visual Basic use different file extensions to distinguish
between classes (.cls), forms (.frm), modules (.bas), and user controls (.ctl).
Visual Basic .NET allows you to mix multiple types within asingle .vb file.
For example, you can create more than one item in the samefile. You can
have a class and some modules, aform and a class, or multiple classes all
within the same file. This allows you to keep any strongly related items
together in the samefile; for example, the Customer and Address classes.

Any files that are not based on a programming language have their own
extension; for example, a Crystal Report file (.rpt) or text file (.txt).

Web project items (.aspx., .asmx, .asax)

Web projects store their items in a Web server virtual directory and in an
offline cache. Like local project items, Web project items also use the .vb
file extension for classes and modules. However, Web project items include
Web-specific files, such as .aspx for Web Forms, .asmx for XML Web
Services, and .asax for globa application classes.

Note For more information about Web projects, see Module 7, “ Building Web
Applications,” in Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease).

Module 2: Development Environment Features 7

What Are Assemblies?

Topic Objective
To explain how assemblies
are created.

Lead-in

Assemblies are a key
concept in the .NET
Framework. They are the
building block of all .NET -
compatible applications.

= An Assembly is One or More .exe or dll Files That Make
Up a Visual Studio .NET Application

m The .NET Framework Provides Predefined Assemblies

m Assemblies Are Created Automatically When You
Compile Source Files

e Click Build on the Build menu

e Use the command-line command vbc.exe

Delivery Tip

Point out that assemblies
will be discussed in more
detail later in the course but
make sure students
understand the basic
concepts at this stage.

An assembly is one or more .exe or .dll files that make up a Visua Studio .NET
application. Assemblies are a key concept in .NET development; they serve asa
building block for all .NET applications. The .NET Framework provides many
predefined assemblies for you to reference within your projects. These
assemblies provide the classes and functionality of the common language
runtime that enables your applications to work.

Assemblies are created automatically when you compile Visua Studio .NET
source files. To create an assembly, compile your application by clicking Build
on the Build menu. Y ou can also use the command-line command vbc.exe to
compile an assembly. Y our assembly can then be referenced by other
applications, in much the same way that ActiveX components can be referenced
in previous versions of Visua Basic.

Note For more information about assemblies, see Module 10, “ Deploying

Applications,” in Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease).

8 Module 2: Development Environment Features

Setting Project References

Topic Objective

To discuss how to reference
external code by setting a
project reference.

Lead-in

Most projects reference
other applications or code
libraries to use the
functionality that they
provide. Use the Add
Reference dialog box to set
project references.

m NET Assemblies
m COM Components

m Projects

You can set project references to other applications or code libraries in order to
use the functionality these applications provide. Y ou can set project references
to other .NET assemblies, existing COM components, or other .NET projects

within the same .NET solution.

To add areference:

1

4. Browse for the appropriate item if the item is not displayed in the list of
available components.

After you set areference, you can use it in the same way that you use COM
components in previous versions of Visual Basic. You can view information
about the reference in the Object Browser and create code that uses the

Select the current project in Solution Explorer. On the Project menu, click
Add Reference.

Inthe Add Referencediaog box, select the appropriate type of reference
by clicking the .NET, COM, or Projects tab.

3. Only projects within the same solution are displayed in the Projectstab.

functionality of the reference.

Module 2: Development Environment Features 9

What Are Namespaces?

Topic Objective

To explain the role that
namespaces play in .NET
development.

Lead-in

Namespaces play an
integral role in .NET
development.

m Namespaces Organize Objects Defined in an Assembly
e Group logically related objects together

m Namespaces Create Fully Qualified Names for Objects
e Prevent ambiguity

e Prevent naming conflicts in classes

Namespaces are used in .NET Framework assemblies to organize the objects of

an assembly (classes, interfaces, and modules) into a structure that is easy to
understand.

Namespaces group logically related objects together so that you can easily

access them in your Visua Basic .NET code. For example, the SQL Client
namespace defined within the System.Data assembly provides the relevant
objects required to use a Microsoft SQL Server™ database.

When you prefix an object with the namespace it belongs to, the object is
considered to be fully qualified. Using unique, fully qualified names for objects
in your code prevents ambiguity. Y ou can declare two classes with the same
name in different namespaces without conflict.

10 Module 2: Development Environment Features

Creating Namespaces

Topic Objective
To explain how to create
namespaces.

Lead-in

You can create your own
namespaces or use the
namespaces that are
defined in the assembly
properties.

m Use Namespace. End Namespace Syntax

m Use the Root Namespace Defined in Assembly

Properties
Namespace Top 'Fully qualified as MyAssembl y.Top
Public Class Inside "Fully qualified as MyAssembl y.Top.Inside
End Class
Namespace InsideTop 'Fully qualified as MyAssembl y.Top. InsideTop

Public Class Inside
"Fully qualified as MyAssembly Top. InsideTop.Inside
End Class

End Namespace

End Namespace

Delivery Tip

This is an animated slide. It
begins by showing the bullet
points only. Click the slide to
reveal the following
sections:

1. Top namespace

2.Inside class
3.InsideTop namespace

Y ou can create your own namespaces in an assembly by creating a block of
code that uses the Namespace.. End Namespace syntax. The following
example shows how to create a namespace named Customers:

Namespace Customers
"Create classes, modules, and interfaces
"Related to Customer information

End Namespace

The assembly usually defines aroot namespace for the project that is set in the
Project Properties dialog box. Y ou can modify or delete this root namespace if

you choose to. The following example shows code in an assembly that hasa
root namespace named MyAssembly:

Namespace Top
"Fully qualified as MyAssembly.Top

Public Class Inside
"Fully qualified as MyAssembly.Top.Inside

End Class

Namespace InsideTop
"Fully qualified as MyAssembly.Top. InsideTop

Public Class Inside
"Fully qualified as MyAssembly.Top. InsideTop.Inside
End Class
End Namespace
End Namespace

Module 2: Development Environment Features 11

The following example shows how code from the same assembly, but outside

of the Top namespace, calls classes. Notice that the MyAssembly namespace is
not required as part of the fully qualified name, because this code also residesin
the MyAssembly namespace.

Public Sub Perform()
Dim x As New Top.Inside()
Dim y As New Top.InsideTop.Inside()

End Sub

12 Module 2: Development Environment Features

Importing Namespaces

Topic Objective
To explain how imports and
aliases can simplify code.

Lead-in

Referencing the full
namespace makes code
difficult to read. You can
avoid this by using the
Imports statement and
aliases.

m Fully Qualified Names Can Make Code Hard to Read

Di

m X as MyAssembly. Top. InsideTop. I nside

m Using The Imports Statement Results in Simpler Code
by Providing Scope

I mports MyAssembl y.Top. | nsideTop

Dimx as Inside

m Import Aliases Create Aliases for a Namespace or Type

| rﬁports IT = MAssembl y. Top. InsideTop

Dimx as IT.Inside

You can access any object in an assembly by using a fully qualified name. The
problem with this approach is that it makes your code difficult to read, because
variable declarations must include the entire namespace hierarchy for you to
access the desired class or interface.

Using the Imports Statement

Y ou can simplify your code by using the Imports statement. Thel mports
statement allows you to access objects without using the fully qualified name.

The Imports statement does not just point to namespaces in other assemblies.
You can also use it to point to namespaces in the current assembly.

The following examples compare two methods for accessing the
InsideT op.Inside class from an external assembly:

m Example using the fully quaified name:

Module ModMain
Sub Perform()
“Fully qualified needed
Dim x as New MyAssembly.Top.InsideTop.Inside()
End Sub
End Module

Module 2: Development Environment Features 13

s Example using the Importsstatement:

Imports MyAssembly.Top.InsideTop

Module ModMain
Sub Perform()
Dim x As New Inside() “Fully qualified not needed
End Sub
End Module

Import Aliases

Y ou can use the Imports statement to create import aliases for parts of
namespaces. Import aliases provide a convenient way to accessitemsin a
namespace. They prevent naming conflicts but still make code easy to write and
understand.

The following example creates an import alias caled IT for the
MyAssembly.Top.InsideT op namespace. Y ou can reference any item
belonging to the namespace by using the IT import alias.

Imports IT = MyAssembly.Top.InsideTop

Module ModMain
Sub Perform()
Dim x As New IT.Inside() “Alias used

End Sub
End Module

14 Module 2: Development Environment Features

Setting Project Properties

Topic O_bjecti_ve
gfoggftféfgﬁéogﬁ o set = Common Property Settings
them. e Defining assembly name
\L/?s%gl_lga_sic NET provides e Root namespace
e e + Prfstapu
behaves. o Startup object
e Importing project-level namespaces
m Configuration Property Settings
e Debugging settings
e Build options
Delivery Tip Y ou can specify many project properties in the projectProperty Pagesdiaog

box. These properties affect how the project behaves both in the IDE and after

The project property pages | g compiled.

are shown during the next

demonstration, Creating@ | The following screen shot shows the project Property Pages dialog box for an
Visual Basic .NET Project. application named SimpleApp:

SimpleApp Property Pages ﬂ
Configuration: IN."A j Elatfarm: IN.I'A j Configuration Managet. .. |
=3 Common Properties Assembly name:
g General | SimpleApp
Build .
Imparts Qukput bype: Skartup object:
Reference Path IWindows Application j I Form1 j

Strong Mame

Rook namespace:
Designer Defaults

Simpled,

(2] Configuration Properties I S
Infarmation
Froject: folder: 2\ TemplSimpleappt,
Project file: SimpleApp. vbproj
Cutput narne: Simpleapp. exe

Cancel Lpply Help

Module 2: Development Environment Features 15

Some of the Common Property settings are listed below.

Property

Usethisproperty to:

Assembly name

Root namespace

Project output type

Startup object

Importing proj ect-
level namespaces

Specify the name of the assembly when compiled into an .exe
or .dll file

Change the root namespace without affecting the name of the
assembly. (A default root namespaceis created when you
create the project.) This property affectsany fully qualified
names used for variable declaration.

Choose what type of assembly is generated when your project
iscompiled. Y ou can select Windows Application (.exe),
Console Application (.exe), or Class Library (.dll).

Select an entry point for your application. Thisisusually the
main form of your application or aSub Main procedure.

Classlibraries cannot have a startup object.

Import multiple namespaces. They are then automatically
accessible without forcing you to use thel mports statement in
each filewithin the project.

Some of the frequently used Configuration Property settings are listed below.

Property

Purpose

Debugging settings

Build options

These properties allow you to set debugging options, like for
previous versions of Visual Basic. Y ou can choose how your
application starts up when debugging by simply starting the
project, starting an external program that callsyour code, or
displaying aWeb page from a URL that callsyour code. You
can also specify any command-line arguments your application
needsfor testing purposes.

Y ou can specify an output directory for your compiled code
(\binisthe default). Y ou can a so enable or disable the
generation of debugging information contained inthe .pdbfile.

16 Module 2: Development Environment Features

Demonstration: Creating a Visual Basic .NET Project

Topic Objective

To demonstrate how to
create a Visual Basic .NET
project.

Lead-in

This demonstration will

show you how to create a
Visual Basic .NET project by
using the project templates.

Delivery Tip

The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

In this demonstration, you will learn how to create a Visud Basic .NET project

based on the project templates. Y ou will also learn about the files that comprise
the project structure and how to create a reference to another assembly.

Module 2: Development Environment Features

€ Using Development Environment Features

Topic Objective
To introduce the topics
covered in this lesson.

17

Lead-in = Using Solution Explorer
The development :
environment contains many = Using Server Explorer
enhanced features that = Using the Object Browser
make developing
Visual Basic .NET projects = Using the Task List
faster and more efficient.] _

= Using Dynamic Help

m Using XML Features

m Recording and Using Macros

- _ The Visua Studio .NET IDE contains several features that enable more

Delivery Tip

Several of the IDE windows
will be familiar to

Visual Basic developers, so
detailed discussion should
not be required.

efficient development of projects. Some of these features are enhancements of
existing Visual Basic features. Others are amalgamated from other sources,
such as Microsoft Visua InterDeve.

After completing this lesson, you will be able to:

= Use IDE tools such as Solution Explorer, Server Explorer, Object Browser,
and Task List.

» Use Dynamic Help while developing your Visua Basic .NET applications.
m Edit XML documentsin the IDE.

= Record and use macros for repetitive tasks in your projects.

18 Module 2: Development Environment Features

Using Solution Explorer

Topic Objective
To discuss how to use
Solution Explorer.

Lead-in

Solution Explorer enhances
the Project Explorer found in
previous versions of

Visual Basic.

solution Enplorer - Sinnplefpp |5

o =@ 6]
A Tokition SpsAop (1 picjed)
(=4 smaplenmm

= Displays Project Hierarchy

e Project references

- ey Baferences
=0 Sep by
=20 ZystemOata
<3 FystemDicming
<200 Sysham WAndoR s Fame

o Forms, classes, modules

o Folders with subitems

B ',;'mmm = “‘Show All Files” Mode
B 28 Ceseas)))
L | R = Manipulating Projects
o e o Drag-and-drop editing
] Farmal.Fisx
] keenses o o Context menus

Solution Explorer displays your project hierarchy, including all project
references; project items such as forms, classes, modules, and so on; and any
subfolders that contain project items. If your solution contains more than one

project, you will see the same sort of hierarchy used in previous versions of
Visual Basic when a project group exists.

“Show All Files” Mode

By default, Solution Explorer only shows some of the files stored in the project
hierarchy. Certain files, which do not form an integral part of the solution, may
be hidden or marked as excluded from the project, such as the filesin the bin
and obj folders on the dlides. These files become visible when you click the
Show All Files toolbar button. This option allows you to see items that are

copied manually to the project folders. The dlide associated with this topic
shows a screen shot of this view of Solution Explorer.

Manipulating Projects

The following features alow you to manipulate your projects with Solution
Explorer:

s Drag-and-drop editing

Y ou can use drag-and-drop editing to move existing project items between
folders.

= Context menus

Most items provide context menus that allow you to perform standard
actions, such as adding to the project, deleting items from the project, and
excluding items from the project, which removes the file from the project
but does not delete the file. If you use Microsoft Visual SourceSafes, you
can add itemsto Visual SourceSafe from Solution Explorer.

Module 2: Development Environment Features 19

Using Server Explorer

Topic Objective
To discuss Server Explorer
and how it can assist in

project development.

Lead-in

Server Explorer allows you
to establish data
connections similar to the
Data View window in

Visual Basic 6.0. However,
Server Explorer also has the
ability to manage and use
specific aspects of a server.

u Manag|ng Data Server Exlnre |
Connections -
EI @ Diata Connections
= Vlerng a'nd Managlng Ematabase Diagrams
Servers Tables
[y views
0 @ Stored Procedures
m Using Drag-and-Drop @ [Functions
Techniques o B

Event Logs

W Message QueUes
Perfarmance Counters
Services

- F# 5QL Servers

e —

In previous versions of Visual Basic, you can manipulate databases by using the
Data View window. Server Explorer provides the same functionality and
additional functionality for managing and using server components.

Managing Data Connections

To use Server Explorer to manipulate a database, add a connection to the server
by clicking Connect to Database on the Server Explorer toolbar. This action
brings up the Data Link Properties dialog box. After a connection is

established, you can view and manipulate the database diagrams, tables, views,
stored procedures, and functions.

20 Module 2: Development Environment Features

Viewing and Managing Servers

You can also use Server Explorer to view and manage various server items
from within the Visual Studio .NET IDE.

Server item Purpose

Event Logs View system event logs for application, security, and system
events. The Properties window displaysinformation about each
particular event. Y ou can use the context menu to clear thelog.

M essage Queues Use message queuesto send messages asynchronously between
applications. Y ou can view and manipul ate any message queues
located on the server by using the context menu for theitem.

Performance Use the many performance counters provided by the Windows

Counters platform to monitor system-level and application-level
interactions, such asthetotal number of logonsto the server.

Services Start and stop Windows services from Server Explorer by using
context menus.

SQL Servers View and manage Microsoft SQL Server™ databases directly

from Server Explorer in the same way that you view and
manage data connections.

Using Drag-and-Drop Techniques

Y ou do not use Server Explorer just for viewing and managing server items.
Y ou can use drag-and-drop techniques to place items (such as fields from a
database) on your forms, or to manipulate server items (such as starting or
stopping a Windows service) from within your Visual Basic .NET code.

Module 2: Development Environment Features

Using the Object Browser

Topic Objective
To describe new features of
the Object Browser.

Lead-in

Visual Basic .NET enhances
the Object Browser found in
previous versions of

Visual Basic.

Library

= Examine Objects and
Their Members

= Access Lower-level Items

e Shows inheritance
and interfaces

= Examine How the .NET
Framework Class
Libraries Use Inheritance

thod

Class Namespace
Inheritance

21

Visua Basic .NET enhances the Object Browser found in previous versions of
Visual Basic. Previous versions of the Object Browser show only a high-level
view of objects and their methods. Using the Visual Basic .NET Object
Browser, you can:

» Examine objects and their members within a library, exploring the object
hierarchy to find details about a particular method or item.

= Access lower-level items, such as interfaces and object inheritance details.

» Examine how the .NET Framework class libraries use inheritance in their
object hierarchies.

22

Module 2: Development Environment Features

The following screen shot shows the Microsoft Visua Basic .NET Runtime
library and its various namespaces. This screen shot highlights the
Microsoft.Visual Basic namespace and shows the classes it contains, including

the highlighted class I nter action, which inherits characteristics from the
System.Object class.

Object Browser k|
Browse: Selected Components + Customize... | ¥h = ¥h v e ’:. df?
Chijects Members of ‘Interaction’

=1+ Microsoft visual Basic, NET Runtime | =@ Beepl) -

= £} Microsoft, VisualBasic
QI; Collection

élg CornClassattribute
QI; Caonskants

=8 CallByMame(Object, String, Microsoft.Visualba
Choose{Double, Object()

=4 Command()

CreateObject(String, Skring)

élg ContralChars =@ DeleteSetting(String, String, Skring)

QI; Conversion - Environ{Inkeger)

' élg DatesndTime | =% Environ(String)

QI; ErrObject =@ GetAllsettings(, Boolean)
élg FileSystern =@ GetObjeck{String, String)
QI; Financial GekSettingString, String, String, Skring)

“# Glabals
QI; Globals, OptionTexkattribute
élg Informnation

=@ IIf(Boolean, Object, Objeck)
=8 InputBaox(String, String, String, Integer, Inkec
=@ MsgBoxi Object, Microsaft,VisualBasic, MsgBio:x

E|¢|; Partition{Long, Long, Long, Long)

El-¥r* Bases and Interfaces SaveSetting{String, String, String, String)
Object Shell(String, Microsoft.VisualBasic, ApphinStyl |
% CptionComparedtribute Suikch{Object)) bl
QI; atrings & | _'I_

«StandardModulesttribute =
Public MotInheritable Class Interaction
Inherits System.Object
Member of Microsoft ¥isualBasic

Summary:
The Interaction module contains procedures used tointerack with objects, applications, and syskems,

Module 2: Development Environment Features 23

Using the Task List

Topic Objective
To describe how to use the
Task List feature.

Lead-in

The IDE provides a Task
List to track tasks that are
awaiting completion and that
are related to a particular
solution.

= Similar to the Tasks Feature in Microsoft Outlook
m Stored with the Solution in the .suo File
m Adding to the Task List
e You can add tasks manually by typing in appropriate field

o Visual Basic .NET adds build errors, upgrade comments, etc.
e You can use token strings to add comments in code

[Test imt - Saaska |
1 + Cwscripiion s s
e FUC_ASAP bug in Parms code CojTarp Srplalippd famil & 5

' TCALED it el e T LI Tl Sarps Appd F L v 9

If you use Microsoft Outlooke, you may be familiar with the Tasks feature.
Y ou can use this feature to maintain alist of tasks that you are working on or
tracking, and you can clear tasks when you complete them. Visua Studio .NET

provides the same functionality through a Task List window, which keeps track
of solution-level tasks that you must complete.

Tasks are kept in the .suo project file so that you do not lose information when

you close your Visual Studio .NET session. Any stored tasks are available to all
devel opers that use the same .suo project files.

Tasks can be added to your Task List in three ways:

= You can manualy add tasks to the task list by typing in the top row that is
awaysvisiblein the Task List window.

» Visua Studio .NET automatically adds tasks to the list when you attempt to
build your application, when you upgrade from a Visual Basic 6.0 project,
or at various other stages during the project. This allows you to keep track
of what you must do to successfully complete your project.

= You can add tasks by creating comments in your code that use specific
token strings defined in the Options diaog box, which is accessible from
the Tools menu. The TODO, HACK, and UNDONE tokens have been
created for you, but you can define your own.

The following example shows a code section that uses the TODO token and a
custom token named FIX_ASAP:

"TODO create icons for form
"FIX_ASAP bug in form code

24

Module 2: Development Environment Features

The following screen shot shows how the Task List window displays

information based on this example, with three extra items that have been added
to the list manually:

Task List - 5 tasks #|
! | | | Description | File | Line |
Click here ko add a new task

FLx_A3AP bug in Form code CATemplSimpledpptForml vb 58

L]

-

*
+
fo
¢4 [] Test main form

¢ [] Deploy application

The following screen shot shows how to use the Options dialog box to create
the FI1 X_ASAP token. Notice that the token has been created so that the items
in the Task List display a High priority icon.

x|
(=3 Envvironment a| eneral

Senerdl W Confirm deletion of kasks
Docurments ;
Dynamic Help Jw siarn when adding a user task that wan't be shown
Follﬂts and Colors Comment Takens
Help i o

Token list: Bririty: Marne:
International Settings ORED IS _|0r| ¥ Hame
Kevhoard I FIX_ASAP
Projects and Solution: :'Sgg

g Task List

UNMDOME

e = ! UnresolvedMergeConf

(23 Source Control
(Z0 Text Editor
|_] Database Tools

[Z1 Debugging 1= | Delete |

(23 HTML Designer The TODO taken cannot be renamed or removed, but the priority For the

[Z2 Prajects - token can be modifisd.
« | v

fAdd

Change |

OF I Cancel Help

Module 2: Development Environment Features

25

Using Dynamic Help
Topic Objective
To explain how to use BB « ix Iotage:
Dynamic Help. m‘!— |
Lead-in = Automatically Displays z; 2
The Visual Studio .NET IDE Relevant Help Topics o
introduces a new form of Based on Focus and et T
assistance that displays Cursor Placement Inoge: Covkl st
Help links dynamically, _ _ ot g e 5
based on your current = Use the Options Dialog
requirements. Box to Configure the T sornates

Dynamic Help Window Bl iads Jocier

1] Getbng Stasted
The Dynamic Help window automatically displays appropriate Help links to

Delivery Tip y p y displays approp! p

Point out to students that
the cursor position is not

tracked if the Dynamic Help
window is not displayed.

the .NET Help files, depending on where the cursor is and what text is
highlighted. As you move from one window to another within the IDE,
information displayed in the Dynamic Help window changes. If you are typing
Visual Basic syntax, you see the appropriate Help topic for the syntax you are
typing.

For example, the results that the Dynamic Help displays for the following
statement vary depending on where the cursor is positioned:

Dim x As Integer

n If the cursor is positioned within the Dim keyword, the Dynamic Help
window displays links relevant to the Dim keyword at the top of the list.

n If the cursor is positioned within the | nteger keyword, the Dynamic Help
window displays links relevant to integer types at the top of the list.

26 Module 2: Development Environment Features

Y ou can use the Optionsdialog box on the Tools menu to configure the items

that the Dynamic Help window displays. The following screen shot shows how
to use the Optionsdiaog box to configure the Dynamic Help window:

(33 Enviranment = Categories: Topic bypes:
General
Dacuments Actions Article

O rarriic Help Training Procedure

Forts and Colors Help Orientation
Help Samples Reference
International Settings Getting Started Sample
Kevhoard Miscellaneous Synka
Projects and Solution:
Task Lisk
\Web Browser [ave e [Aove ot |

(23 Source Control

g L?;:;:I:Dr = Show links Far: ™ Limit number of links per category:

[_ Database Tools " Selection orly I 10

(2 Debugging € Active UI elements

(53 HTML Designer - (% Show al links

| o

OF I Cancel Help

Using XML Features

Topic Objective

To explain how to use the
XML features provided by
the IDE.

Lead-in

Many of your

Visual Basic .NET
applications will use XML
documents to store or
retrieve information. The
IDE provides several XML
features that make it easier
for you to use these types of
documents.

Module 2: Development Environment Features 27

AutoComplete

Color-Coding

Bk store usl® |

Dt T [T

taihies

HTML and XML Document Outline Window

Data View for Manipulating Data

L type price:
{3 | Ths By Evaciithos's Dtnhate Gisde [19,93
| B Cooling weth Covputers Sumeptios Babands Shestr basness L5

Bt Can Combat Corpubar Sraml b z
| B 3rag Tak sbo Campedan [Fr— ma

| 8| sicon Valey Gantroncinic Trasks
| | Thes i3 et Mcronaas

| BB [It e Frisndk?
B seryeds of Shoon Wby

rod_pack. 1999
wad_pocd, i)

T S

Delivery Tip

There is a Bookstore.xml file
in the DemoCode folder for
this module. You can use
this file to demonstrate the
Document Outline window
and color-coding features.

Enterprise applications often use XML documents to specify information as
part of the application architecture.

The Visua Studio .NET IDE provides several useful features for creating and
editing XML documents, as described in the following table.

XML feature

Description

Hypertext Markup Language
(HTML) and XML Document

Outline window
AutoComplete

Color-coding

Data View for manipulating
data

Providesaview of the hierarchy of HTML and XML
documents within the application.

Automatically creates the closing tags when you
createeither HTML or XML starting tags.

Thisfeature can be switched off inthe Options
dialog box.

Assistsin distinguishing tags from data.
Allowsyouto add itemsto your XML datahierarchy
and edit existing information.

Provides hyperlinksfor navigation to lowerd evel
itemsin the XML hierarchy.

28 Module 2: Development Environment Features

Recording and Using Macros

Topic Objective
To explain how to record
and use macros in the IDE.

Lead-in

You may be familiar with
macros in Microsoft Word or
Microsoft Excel. Now you
can use macros in

Visual Studio .NET.

EETIEES d = You Can Use Macros for
e Mt Repetitive Tasks such as

I Hoduiel 1

. illﬁ Inserting Comments

1@ ConpenhCode)
=t (53 Tl m Macro Explorer Provides
H] DertiudoaEdbod 1 1

b ajw::m Macro Navigation

H 2] Wbl .

LT Lo m The IDE Provides Samples:

e Toggle line numbering

- A3 T e e
&) vaDatgoer
A= podereabpontToisn
12 [rrpchacks
G RonTolkeatEnesbpoint
- 43 SiepCrverad
! T3 Steptwer alErdDungstacks
- 3] vsbdeor u

e Saving/loading Window
Views

e Debugging macros

To Record New Macros, Go
to the Tools/Macros Menu

Macros allow users to perform repetitive tasks with the click of a button or
menu item. The Visua Studio .NET IDE provides macros, so you can automate
tasks that require tedious work, such asinserting standard comments into your
code.

The Macro Explorer alows you to edit, rename, delete, or run your macros
within the IDE.

Severa sample macros are included in the IDE, including the following:
= Toggle line numbering macros

= Saving or loading Window Views macros

= Debugging macros

You can use any of the sample macros in your projects by executing them in the
Command window or placing them on menus or toolbars.

To record your own macros.

1. Onthe Tools menu, pointto Macros, and then click Record Temporary
Macro.

2. Perform the actions that you wish to record, such as inserting commentsin
the current module.

3. Click Stop Recording onthe Recorder toolbar to stop recording your
macro.

4. Your macro is saved with atemporary name visible in the Macro Explorer.
Y ou can rename the temporary macro to save your macro with an
appropriate name.

Any macros you create are stored in a subdirectory of the Visual Studio
Projectsfolder in My Documents.

Module 2: Development Environment Features

Demonstration: Using the Visual Studio .NET IDE

Topic Objective

To demonstrate how to use
the windows that make up
the Visual Studio .NET IDE.

Lead-in

This demonstration shows
how to use Solution
Explorer and Server
Explorer, and how to edit an

XML document in the
Visual Studio .NET IDE.

29

Delivery Tip

The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

In this demonstration, you will learn how to use several features of the

Visual Studio .NET IDE, including Solution Explorer, Server Explorer, and
XML editing tools.

30 Module 2: Development Environment Features

€ Debugging Applications

Topic Objective
To introduce the topics
covered in this lesson.

Lead-in m Setting Breakpoints
The new IDE provides .

enhanced debugging = Debugging Code
features based on those

m Using the Command Window

found in previous versions
of Visual Basic.

The Visual Studio .NET IDE provides enhanced versions of many of the

debugging features found in previous versions of Visual Basic, dong with
severa powerful features found in Visual C++.

After completing this lesson, you will be able to:

= Set breakpoints.

» Debug codein aVisua Basic .NET project.

= Use the Command window while designing and debugging applications.

Module 2: Development Environment Features 31

Setting Breakpoints

Topic Objective
To explain how to set
breakpoints.

Lead-in

Setting breakpoints in your
project allows you to step
into your code under a
variety of conditions.

m Set Breakpoints to Halt Code Execution at a Specific Line
m Use the Breakpoint Properties Dialog Box to
Set Conditions
e) OISR |
wmeon P || ﬂflhm“.!nﬂﬂﬂl:iﬁiwﬂw
= (oo
B [syt A la=8
= (7 LT
Gmmicn [o
o | e |
R e O £
it ok wbaw bk ot b sl i :m‘l‘i—dnhu-i-dll-::::ﬂh;lhl-ld
e, fre braslacnd i b
Hirnok e o i 1, 7 ;l'a
l..u..;u. | Gaehioss o
] o | | e T

Breakpoints halt execution of code at a specific line. You can set breakpoints at
design time or during a debugging session.

There are severa ways you can set a breakpoint:

m Click the margin to the left of the code window on the line containing the
statement where you want the debugger to halt.

= On the Debug menu, click New Breakpoint, and choose from the various
options.

= Place the cursor on the line where you want the debugger to halt. Press F9
to switch the breakpoint on or off.

You can use the Breakpoint Properties dialog box to make a conditional
breakpoint. This feature works in away similar to watch expressionsin
previous versions of Visual Basic. You set a breakpoint condition that only

halts execution when a particular condition is true or when a variable has
changed.

The following screenshot shows a breakpoint condition that only halts when a
variable x has a value of 10.

Breakpoint Condition x|

YWhen the breakpaint location is reached, the expression is evaluated and the
breakpoint is hit only if the expression is either true or has changed.

v Condition

|x=1IZI

% s true

™ has changed

Cancel Help

32

Module 2: Development Environment Features

You may also want to halt execution only when the breakpoint has been

reached and the breakpoint condition has been satisfied a specific number of

times. This number is called the hit count.

To set abreakpoint hit count:

1. Inthe Breakpoint Properties dialog box, click Hit Count.
2. Inthe Breakpoint Hit Count dialog box, choose the type of hit count test

that you want to perform from the drop-down combo box, enter the

appropriate hit count value, and then click OK.

The following screen shot shows how you specify that you want execution to
stop the third time that the breakpoint is reached and the breakpoint condition is

satisfied:

Breakpoint Hit Counk

& breakpoint is hit when the breakpoint location is reached and the condition is

satisfied, The hit count is the number of times the breakpoint has been hit,

When the breakpoint is hit:

Ibreak when the hit count is equal ko

EE

Reset Hit Counk Current hit count: 1]

0] 4

Cancel |

Help

Module 2: Development Environment Features 33

Debugging Code

Topic Objective
To discuss how to debug
code and use the various

debugging windows. m Use the Debug Menu or Toolbar to Step Through Code
Lead-in = Use the Debugging Windows:

Several aspects of

debugging in e Locals: to view and modify local variables

Visual Basic .NET will be
familiar to Visual Basic

developers.

Output: to view output from the compiler

Watch: to view watch expressions

Call Stack: to view call history, including parameter
information

Breakpoints: to view, add, or temporarily disable
breakpoints

Debugging your code in Visual Basic .NET is similar to debugging code in

previous versions of Visua Basic. When code execution stops at the breakpoint,
you can step through the code by using the Debug menu or toolbar.

All of the debugging windows found in previous versions of Visual Basic are
available in Visual Basic .NET, but with some enhancements.

Debug window Usethiswindow to:

Locds View and modify variables.

Thiswindow provides explicit detail s about objects, such as
inheritance information. The tree view of thiswindow is
particularly useful for viewing valuesin an object hierarchy.

Output View output information from the compiler, such asthe number of
compilation errorsthat occurred and what libraries were |oaded.

Y ou can use theDebug.Writelinestatement to print information tc
the Output window. This statement replaces the Debug.Print
statement in previous versions of Visual Basic.

Watch View and manipulate any watch expressions.

To add values to the Watch window, type in theName column of
an empty row, or click Quick Watch on the Debug menu. This
allowsyou to quickly add watch expressions during your
debugging session.

Unlikein previous versions of Visua Basic, you cannot set watch

conditions. These have been replaced by breakpoints conditionsin
Visual Basic .NET.

34 Module 2: Development Environment Features

(continued)
Debug window Usethiswindow to:

Call Stack View thehistory of callsto theline of code being debugged.

Thiswindow displaysthe history of the call, including any
parametersto procedures and their values.
Breakpoints View alist of current breakpoints, including information such as

how many times the breakpoint has been called, and the conditions
the breakpoint has met.

Y ou can al so add new breakpoints and temporarily disable
breakpoints in this window.

Module 2: Development Environment Features

Using the Command Window

Topic Objective

To explain the purpose of

the Command window.

Lead-in
The Command window

combines features found in
the Immediate window of

previous versions of
Visual Basic with a

command-line utility.

= Immediate Mode

o Similar to the Inmediate pmmmrrrmmr——— 2
window Jnewalue =]
12
= Command Mode newValus = 44
=Debng. Stoplebupging
e Use Visual Studio IDE if;:f,,
features Dt STare
. . wimme=d
= Switching Modes Tnevalus

1z
o o

e Use >cmd to change to
Command mode

e Use immed to return to
Immediate mode

35

In Immediate mode, the Command window in Visual Basic .NET provides
functionality similar to that found in the Immediate window in previous

versions of Visual Basic. You can query loca variables while debugging and
change their values under certain conditions. Y ou can aso run proceduresin
your code or other .NET Framework class libraries while you are in Immediate

mode.

The Command window also has a second purpose. In Command mode, you can

use features of the Visual Studio .NET IDE. The features you can use whilein

Command mode include the following:

The Debug.Start command, to start debugging

The Help command, to display the Visua Studio .NET documentation
The Exit command, to quit the Visual Studio .NET IDE

Any macros that you recorded

Any macros that the IDE provides as samples

To switch between the two modes of the Command window:

Use the >cmd command to switch from Immediate mode to Command
mode.

You can issue single commands in Immediate mode by prefixing your
command with the > symboal.

Use the immed command to switch from Command mode to Immediate
mode.

36 Module 2: Development Environment Features

The following example shows various commands in both Immediate and

Command mode. The window is initially in Immediate mode during a
debugging session.

?newValue

12
newValue=44
?newalue

44
>Debug . StopDebugging
>cmd

>help
>Debug.Start
>immed
?newalue

12

The following steps are executed in this code:

The example shows a loca variable named newValue with avalue of 12.
In Immediate mode, this value is changed to 44.

The variable is queried again to confirm the change.

A single command is issued to stop debugging.

The cmd command is used to switch to Command mode.

The help command is used to display the Visud Studio .NET
documentation.

L A

~

The Debug.Start command is used to start debugging.
8. The immed command is used to switch back to Immediate mode.
9. The newValue variable is tested again.

Module 2: Development Environment Features

Demonstration: Debugging a Project

Topic Objective

To demonstrate how

to debug a simple

Visual Basic .NET project.
Lead-in

This demonstration shows
how to debug a simple
Visual Basic .NET project.

37

Delivery Tip

The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

In this demonstration, you will learn how to use the debugging features of the
Visua Studio .NET IDE to debug a simple Visual Basic .NET project.

38 Module 2: Development Environment Features

€ Compiling in Visual Basic .NET

Topic Objective
To introduce the topics
covered in this lesson.

Lead-in m Locating Syntax Errors
Compiling an application in Al .
Visual Basic NET m Compilation Options

After completing this lesson, you will be able to:

Locate syntax errors when you attempt to build your application.

m Select the best compilation option for building your Visuad Basic .NET
projects.

Module 2: Development Environment Features 39

Locating Syntax Errors

Topic Objective

To explain how to locate
syntax errors when
attempting o build an
application.

Lead-in
You can immediately

address syntax errors when
you attempt to build your

project.

m The Task List Displays Compilation Errors
e Displays error description, file, and line number

m Double-Click the Entry to View the Error

[im newimlue &5 gyg

pimlue. Dait ||

Tash List - 2 Ruild Error backs chaem {fitored

-'-@ Trpe s rict defired: e’ Cilrenp)Smplsapoi™omlab 49
3 hﬂ Tre meame s & not declared CiTenp|3npsdpoFomlvt 45

Visua Basic .NET displays compilation errors as you type each statement in
your application code. If you ignore these warnings and attempt to build your
application, the Task List is displayed, with all build errors included on the list.

Information about the error includes the error description, the file in which the
error occurred, and the line number. The error description is the same
information that you see if you position the cursor over the highlighted part of
your code in the code window.

You can edit the errors by double-clicking the appropriate entry in the Task List.
This positions the cursor in the correct file and exact line where the error is
located, so you can make the required modifications. As soon as you complete

your changes and you move off the modified line, the Task List entries are
updated.

40 Module 2: Development Environment Features

Compilation Options

Topic Objective
To describe the options
available when you compile

a project.

Lead-in

There are several
compilation options
available to you when

you compile your

Visual Basic .NET projects.

= Build Configurations
e Debug - provides debug information
e Release - optimizes code and executable size
= Build Options
e Build - only builds changed projects
e Rebuild - rebuilds project regardless of changes
e Batch Build- builds multiple versions of projects

e Clean - deletes intermediary files and directories

The Visua Studio .NET IDE provides several compilation options for building
your Visud Basic .NET projects.

Build Configurations
There are two types of build configurations for Visual Basic .NET projects:

Debug

During the development phase, you may want to build and test your
applications by using compiled assemblies. The Debug configuration
produces a .pdb file that contains debugging information. Other applications
can use this file to debug your code. To assist these other applications, no
optimizations are made to your code. Other applications have access to your
complete and original code.

Release

After testing is completed, you will want to deploy your application to client
computers. The Release configuration performs various code optimizations
and attempts to minimize the size of the executable file. No debugging
information is generated for a Release configuration build.

Build Options

Y ou can choose what to build by selecting the appropriate Build menu options.

Build

The Build option only builds project items whose code has changed since
they were last compiled.

Rebuild

The Rebuild option compiles all project items even if they have not been

modified since they were last compiled. Use this option when you want to
be sure your application contains the latest code and resources.

Module 2: Development Environment Features 41

Batch Build

To build more than one version of a project (or multiple projects if they are
loaded in a solution), you can use the Batch Build option. Use this option if
you want to build both Debug and Release versions of your project. The
different builds will be created in the \\obj\Debug and \\obj\Release
subdirectories of the project directory.

The following illustration shows the Batch Build dialog box. It specifies

that both the Debug and Release versions of the SmpleApp project will be
built.

X
Check the project configurations ta build:
Project I Configuration | Platform I Solution Config | Build I Build |
] : v
SimpleApp Debug MET Debug Rebuid |
Sinmplespp Relzase MET Release LI
Clean |
Select All |
Deselect Al |
Help
Clean

The Clean option alows you to create a Clean build of your projects by
deleting all intermediary files and directories. You can use this option to
make sure that you do not inadvertently leave previous versions of
intermediary files and directories on your system.

42 Module 2: Development Environment Features

Lab 2.1: Exploring the Development Environment

Topic Objective

To introduce the lab.
Lead-in

In this lab, you will explore
the development
environment and debug a
simple applicaion.

Ve
>

| Explain the lab objectives. | Objectives

After completing this lab, you will be able to:

= UsetheVisua Studio .NET IDE.

m Create asimple Visud Basic .NET project.
= Set conditional breakpoints.

= Debug an application.

» Usethe Task List and Command windows.

Prerequisites

Before working on this lab, you must have experience with developing
applications in an earlier version of Visua Basic.

Scenario

In this lab, you will explore the Visua Studio .NET IDE and use its features to
create a data connection and view event log information. You will create a
simple Windows-based application and add a prewritten form to the project.

Finally, you will debug the application by using the various debugging features
of the IDE.

Starter and Solution Files

There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab021\Ex02\Starter folder, and the solution files are
in the install folder\Labs\Lab021\Ex02\Solution folder.

Estimated time to complete this lab: 45 minutes

Exercise 1

Module 2: Development Environment Features

Becoming Familiar with the Visual Studio .NET IDE

In this exercise, you will use Server Explorer to create a data connection for the
Northwind SQL Server database. Youwill investigate Server Explorer, and the
event logsin particular. You will then view the Options dialog box to become
familiar with the default IDE settings.

43

The purpose of this exercise is for you to become familiar with the IDE, so take
time to explore any parts of the IDE that are interesting to you.

I To add a data connection by using Server Explorer

1

Open Visual Studio .NET.

2. Onthe View menu, click Server Explorer.

3. Onthe toolbar, click Connect to Database. Use the following values to

complete the Data Link Properties dialog box:

Property Value

Server name localhost

Logon information Windows NT Integrated security
Database Northwind

Click Test Connection to verify that you have successfully made the
connection, and then click OK.

5. Click OK on the Data Link Properties didog box.

If you are not familiar with the Data View window from previous versions
of Visual Basic or Microsoft Visua InterDeve, explore the list of tables,
views, and stored procedures by expanding the newly created
servernameNor thwind.dbo data connection.

I To explore the Application event log

1.

Under the Server s node of Server Explorer, expand the name of your
computer.

Expand the Event L ogs node, and then expand the Application node.

Select an EventL ogEntry node and view the application entry information
in the Properties window.

I To explore the default IDE configuration options

1
2.

On the Tools menu, click Options.

Spend several minutes becoming familiar with the default Environment
settings.

44 Module 2: Development Environment Features

Exercise 2
Creating a Visual Basic .NET Project

In this exercise, you will create asimple Visua Basic .NET project and remove

the default form from the project. Y ou will then add a prewritten form to the
project and change the Startup object property of the project.

The prewritten form displays a text box and a command button. When you
press the button, the value in the text box is sent to a subroutine. This

subroutine verifies that the value is not empty and displays a message based on
the value. If the value is empty, an error message appears.

I To create a new project
1. Onthe File menu, point to New, and then click Project.

2. Inthe Project Types box, click the Visual Basic Projectsfolder.
3. Inthe Templates box, click Windows Application.
4. Change the name of the project to FirstApp, set the locaion to

install folder\Labs\Lab021\Ex02, and then click OK.

£ To add thetest form

1. In Solution Explorer, right-click FormZ1.vb, click Delete and then confirm
the deletion warning.

2. Onthe Project menu, click Add Existing Item.

3. Set the location to install folder\Labs\L ab021\ExO2AStarter, click
frmDebugging.vb, and then click Open.

4. Using Solution Explorer, click frmDebugging.vb, and then click the View
Code button.

5. Examine the code in the btnDebug_Click and PerformValidation
procedures, and ensure that you understand the purpose of the code.

I To set the project startup property
1. In Solution Explorer, right-click FirstApp, and then click Properties.

2. Inthe Startup object list, click frmDebugging, and then click OK.
3. Onthe Filemenu, click Save All to save the project.

Module 2: Development Environment Features 45

Exercise 3
Using the Debugger

In this exercise, you will use the Visua Studio .NET debugger to debug the
simple application that you created in the previous exercise.

You will set abreakpoint to halt execution in the btnDebug_Click event
handler and use the debugger to step through the subroutine. Y ou will examine
the parameter passed to the PerformValidation procedure and change the
vaue by using the Locals window. Y ou will then step through the rest of the
code and verify that the correct message appears. Finaly, you will modify the
breakpoint so that it is conditional, and use the Command window to perform
various I DE functions.

I To set a breakpoint
1. Onthe View menu, point to Other Windows, and then click Task List.

2. Right-click anywhere within the Task List window, point to Show Tasks,
and then click All.

3. Double-click thesingle TODO task to navigate to the comment in the code.

4. Place the pointer on the line immediately after the TODO comment and
press F9, the breakpoint shortcut key.

IZ To debug the project

On the Debug menu, click Start.

Enter any value into the text box and then click Debug.

When the program execution halts, on the Debug menu, click Step Into.

A w DD P

Continue to click Step Into until the PerformValidation procedure begins
execution.

5. Examine the contents of each of the following windows:. Locals,
Breakpoints, and Call Stack.

6. Inthe Locals window, change the value of the strValue variable to a new
value. Do not forget to include the quotation marks around the new value.
Press ENTER.

7. Step through the remaining lines of code, closing any message boxes, until
the form appears again.

46

Module 2: Development Environment Features

£ To modify the breakpoint

1
2.
3.

While the form is displayed, move to the Breakpoints window in the IDE.
Right-click the breakpoint, and then click Properties.
Click Condition, and then set the following condition value:

Condition Break When

txtVaue Text has changed

Click OK inthe Condition dialog box, and then click OK in the
Breakpoint Properties didog box.

. On the form, click Debug. Thistime your code should execute without

debugging.

Change the value in the text box and click Debug. This will cause execution
to halt because you have met the condition of the breakpoint.

7. Onthe Debug menu, click Continue to allow the execution to complete.
8. In the Breakpoints window, clear the breakpoint check box to disable the

breakpoint. Verify that execution no longer halts, even if you change the
value in the text box.

£ To use the Command window

1.

Display the Command window and enter the following command:

Debug.StopDebugging. The debugging session will end and the IDE will
return to the design state.

If the Command window is no longer displayed, on the View menu, point to
Other Windows, and then click Command Window.

In the Command window, enter the Exit command to quit
Visual Studio .NET.

Review

Topic Objective

To reinforce module
objectives by reviewing key
points.

Lead-in

The review questions cover
some of the key concepts
taught in the module.

Module 2: Development Environment Features

m Describing the Integrated Development Environment
m Creating Visual Basic .NET Projects

m Using Development Environment Features

m Debugging Applications

m Compiling in Visual Basic .NET

47

. List the file extensions for the following Visual Basic .NET files:

Visua Basic .NET project files, classes, and modules.
.vbproj, .vb, and .vb

. Describe the purpose of namespaces and the | mports keyword.

Namespaces or ganize the abjects and items found in an assembly and
prevent ambiguity when calling an object.

The Imports keyword allows you to access an object from within a
namespace without using the object’ s fully qualified name.

. Describe the purpose of Server Explorer.

Server Explorer allows you to view and manipulate databases and
various server items, such as message queues, event logs, Windows
services, and XML Web Services. You can also use Server Explorer to
access these items from within your code.

. The Object Browser is exactly the same as in previous versions of Visual

Basic. True or false? If false, explain why.

False. The Object Browser has been enhanced to include inheritance
and interfaces in the object hierarchy.

48 Module 2: Development Environment Features

5. Describe the purpose of a conditional breakpoint and how to create one.

Conditional breakpoints halt execution when a particular condition is
met, such aswhen a variable equals a certain value.

To set a conditional breakpoint, you add a standard breakpoint, and
then use the Breakpoint Properties dialog box to modify the conditions.

6. You can only build one version of an application at atime. True or false? If
false, explain why.

False. Using the Batch Build dialog box, you can specify which version
of the application you want to build, such as Debug and Release.

