

Contents

Overview 1

Describing the Integrated Development
Environment 2

Creating Visual Basic .NET Projects 3

Demonstration: Creating a Visual Basic
.NET Project 16
Using Development Environment Features 17

Demonstration: Using the Visual Studio
.NET IDE 29

Debugging Applications 30

Demonstration: Debugging a Project 37

Compiling in Visual Basic .NET 38

Lab 2.1: Exploring the Development
Environment 42

Review 47

Module 2: Development
Environment Features

This course is based on the prerelease version (Beta 2) of Microsoft® Visual Studio® .NET
Enterprise Edition. Content in the final release of the course may be different from the
content included in this prerelease version. All labs in the course are to be completed with
the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be in ferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 2: Development Environment Features iii

Instructor Notes

This module teaches students some of the overall benefits of using the new
Microsoft® Visual Studio ® .NET version 7.0 integrated development
environment (IDE) and how to create Visual Basic ® .NET projects. Students
will try some of the tools that make the IDE so powerful for application
development. They will learn how to debug and compile projects.

After completing this module, students will be able to:

n Describe the overall benefits of the new IDE.

n Describe the different types of Visual Basic .NET projects and their
structures, including their file structures.

n Reference external applications from a project.

n View and set the properties of a project.

n Use the various windows in the IDE, including the Server Explorer, Object
Browser, and Task List.

n Debug a simple application.

n Build and compile a simple application.

Materials and Preparation
This lesson provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_02.ppt

n Module 2, “Development Environment Features”

Preparation Tasks
To prepare for this module, you should:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstrations.

n Complete the labs.

Presentation:
60 Minutes

Lab:
45 Minutes

iv Module 2: Development Environment Features

Demonstrations
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Creating a Visual Basic .NET Project
å To prepare for the demonstration
• Open Visual Studio .NET.

å To use a project template

1. Create a new project and point out the various project templates available
when creating a Visual Basic .NET project. Remind students of the general
purpose of each template.

2. Create a Windows application project named SimpleProject in the
install folder\DemoCode\Mod02\SimpleProject folder.

å To analyze the project

1. Examine the current project hierarchy. Point out the solution, project, and
Form1 files.

2. Open the project Property Pages dialog box, and then explain all aspects of
the General section under Common Properties, such as Assembly name,
Root namespace, and Output type .

3. Examine the Imports section. Point out that these project-level imports do
not require an Imports statement in the code.

4. Close the project Property Pages dialog box.

å To add a project reference

1. Examine the current list of project references in the Solution Explorer. Point
out some of their properties, such as the location of the assembly .dll files.

2. Open the Add Reference dialog box for the project and examine the list
of .NET and COM items listed in the list boxes. Add one of the .NET
assemblies such as System.EnterpriseServices (the reference will not
actually be used in the demonstration, but it can be seen in the Solution
Explorer). Point out that if a COM reference is added, the COM
interoperability mechanism is invoked and should be accepted. Also point
out that there are currently no items on the Projects tab, because no other
projects are loaded into this solution.

3. Save the project and close Visual Studio .NET.

 Module 2: Development Environment Features v

Using the Visual Studio .NET IDE
å To prepare for the demonstration

• Open Visual Studio .NET, and then open the SimpleProject project created
in the last demonstration (“Creating a Visual Basic .NET Project”).

å To use the Solution Explorer

1. Add a class module to the project. Leave the default name Class1.vb.

2. Select the project in the Solution Explorer. On the Project menu, click New
Folder to add a new folder to the project hierarchy. Rename the folder
Classes.

3. Drag the Class1.vb file to the Classes folder.

4. Right-click Class1.vb, and then click Exclude From Project.

5. On the Solution Explorer toolbar, click Show All Files.

6. Right-click Class1.vb, and then click Include In Project.

å To use Server Explorer to create a data connection

1. Open Server Explorer.

2. Click Auto Hide on the Server Explorer toolbar to anchor Server Explorer
to the screen.

3. To add a data connection to the project, click Connect to Database on the
Server Explorer toolbar.

4. Enter the following values in the Data Link Properties dialog box.

Property Value

Server name localhost

Logon information Windows NT Integrated security

Database Cargo

5. Expand the new data connection. Point out the functional similarity to the
Data View window found in previous versions of Microsoft Visual Basic.

å To use the Server Explorer to examine the local server
1. In Server Explorer, expand Servers .

2. Expand the instructor machine.

3. Expand and examine the server items, such as Event Logs , SQL Servers,
Performance Counters, and Services.

4. To start the SQLServerAgent service, expand the Services item, right-click
SQLServerAgent , and then click Start. Point out how to stop the service if
required.

5. Click Auto Hide to hide Server Explorer.

vi Module 2: Development Environment Features

å To edit an Extensible Markup Language (XML) file

1. Using Windows Explorer, navigate to the install folder\DemoCode\Mod02
folder.

2. Drag the Customers.xml file from Windows Explorer to the SimpleProject
node of the tree view in Solution Explorer.

If you drop it anywhere else, it may not be added to the project successfully.

3. Point out that this copy of the document is stored with the project files.

4. Double-click Customers.xml in the Solution Explorer to edit the document.

5. Examine the document in XML view and then Data view.

6. Change the first name of one of the customers by using the editable grid,
and then press ENTER. Confirm the change has taken place by checking the
data in XML view.

7. Save your project and close Visual Studio .NET.

Debugging a Project
å To prepare for the demonstration

• Open Visual Studio .NET, and then open the install folder\DemoCode\
Mod02\Debugging\Starter\Debugging.sln solution.

å To set a conditional breakpoint
1. Open the code window for the form.

2. Explain the purpose of the code.

3. Set a breakpoint on the Button1_Click procedure definition.

4. Right click on the breakpoint itself, and in the Breakpoint Properties
dialog box, click Condition. Set the following condition:

iCounter = 4

5. Close the Breakpoint Properties dialog box.

å To step through the code
1. Run the project.

2. When the form appears, click the Begin button on the form. Verify that the
Output window displays the debugging information as a result of the
Debug.WriteLine statement.

3. To demonstrate that the condition is not initially met, click Begin three
times until execution halts at the conditional breakpoint.

4. Point out the various debugging windows, including the Locals and
Breakpoints windows, and the value of the iCounter variable.

5. Step through the entire code by using either the Debug menu or toolbar
before closing the form and stopping the debugging process.

 Module 2: Development Environment Features vii

å To use the Command window

1. Ensure the Command window is activated and that the command prompt (>)
is displayed. If it is not, type >cmd and press ENTER.

2. Use the Debug.Start command to start the debugger.

3. Click Begin three times to enter debugging mode, and then click the
Command window tab to make it the active window.

4. Use the immed command to change to Immediate mode.

5. Type ?iCounter to check the value of the iCounter variable.

6. Use the >cmd command to change back to Command mode.

7. Use the Debug.StopDebugging command to end the debugging session.

8. Use the Exit command to close Visual Studio .NET.

viii Module 2: Development Environment Features

Module Strategy
Use the following strategy to present this module:

n Describing the Integrated Development Environment

This lesson is an introduction to the general benefits of using the
Visual Studio .NET IDE.

The most important aspect of this lesson is that there is only one IDE that is
required to create all types of projects. Students no longer must develop
their components in the Visual Basic IDE and their Web pages in Microsoft
Visual InterDev® or another Web development tool.

n Creating Visual Basic .NET Projects

This lesson introduces some of the basic concepts required to create a
Visual Basic .NET project. Many aspects of this lesson are similar to
concepts covered in previous Visual Basic courses, such as project
templates, structures, properties, and references.

This lesson also introduces assemblies and namespaces, both of which are
fundamental aspects of .NET-compatible development. Explain assemblies
enough to give the students an overall understanding of their purpose,
without going into too much depth. Concepts such as versioning and
security will be covered in Module 10, “Deploying Applications,” in
Course 2373A, Programming with Microsoft Visual Basic .NET
(Prerelease).

The namespaces lesson has a small amount of simple code that you will
need to explain to students. This code defines classes and creates objects
based on those cla sses. This type of code will be easily understood by all
Visual Basic developers, but advise them that this code will be explained in
Module 5 “Object-Oriented Programming in Visual Basic .NET,” in
Course 2373A, Programming with Microsoft Visual Basic .NET
(Prerelease) .

n Using Development Environment Features

This lesson introduces the various features of the IDE such as the Solution
Explorer, Server Explorer, Object Browser, Task List, Dynamic Help, XML
editing, and macros. Some of these items are similar to those found in
previous versions of Visual Basic, such as the Solution Explorer and Object
Browser, so you will not have to explain them in detail.

Students should have a basic amount of XML knowledge, but check that
they understand the structure of the XML document, Bookstore.xml, shown
in the demonstration.

 Module 2: Development Environment Features ix

n Debugging Applications

This lesson begins by discussing breakpoints and how to set them. This will
not be new to most students. However, explain how to set conditional
breakpoints in detail, because this is handled differently in
Visual Basic .NET than in previous versions of Visual Basic.

This lesson discusses the various debugging techniques and debugging
windows that are available. Again, because several of these features are
based on previous versions of Visual Basic, point out the enhancements
rather than explaining each feature in much detail.

The Command window is also discussed, and the slide shows an example of
the window’s use. Step through the example and point out the various
effects each statement has on the environment.

n Compiling in Visual Basic .NET

This lesson begins by looking at how the Task List window assists you in
tracking syntax errors during an attempted compilation. The last slide
discusses the various compilation options available to the developer,
including the possible configuration settings Debug and Release. Be sure
students understand the difference between the two settings. This will affect
the assembly that is generated.

 Module 2: Development Environment Features 1

Overview

n Describing the Integrated Development Environment

n Creating Visual Basic .NET Projects

n Using Development Environment Features

n Debugging Applications

n Compiling in Visual Basic .NET

The Microsoft® Visual Studio® .NET version 7.0 integrated development
environment (IDE) provides you with enhancements to many tools found in
previous versions of Microsoft Visual Basic®, combined with features found in
other environments, such as Microsoft Visual C++®.

In this module, you will learn the overall benefits of using this new IDE. You
will learn how to create Visual Basic .NET projects, and will try some tools of
the new IDE. Finally, you will learn how to debug your projects and how to
compile them.

After completing this module, you will be able to:

n Describe the overall benefits of the new IDE.

n Describe the different types of Visual Basic .NET projects and their
structures, including their file structures.

n Reference external applications from your project.

n View and set the properties of a project.

n Use the various windows in the IDE, including Server Explorer, the Object
Browser, and the Task List.

n Debug a simple application.

n Build and compile a simple application.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will
learn about the
Visual Studio .NET
development environment
and the many powerful
features it provides for
Visual Basic .NET
developers.

2 Module 2: Development Environment Features

Describing the Integrated Development Environment

n There Is One IDE for All .NET Projects

n Projects Can Contain Multiple Programming Languages

l Example: Visual Basic .NET and C# in the same project

n The IDE Is Customizable Through “My Profile”

n The IDE Has a Built-in Internet Browser

The Visual Studio .NET IDE provides some significant enhancements to
previous IDEs for Visual Basic.

n There is one IDE for all Microsoft .NET projects

The Visual Studio .NET IDE provides a single environment where you can
develop all types of .NET applications, from simple applications based on
Microsoft Windows®, to complex n-tier component systems and complete
Internet applications. For example, you no longer need to create your
components in a separate environment from your Internet pages and scripts.

n Projects can contain multiple programming languages

You can incorporate multiple programming languages within one solution
and edit all your code within the same IDE. This can aid team development
of a system where parts of the solution are written in Visual Basic .NET,
and other parts are written in C# or other .NET -compatible languages.

n The IDE is customizable through My Profile

The IDE is fully customizable through the My Profile configuration section
on the Visual Studio .NET Start Page.

• You can select a preexisting profile such as the Visual Basic Developer,
or you can modify each section manually.

• You can specify how you want your IDE screen to look and how the
keyboard behaves. This is particularly useful if you are used to Visual
Basic version 6.0 keyboard shortcuts for various actions.

• You can choose to filter help files based on your preferences.

n The IDE has a built-in Internet browser

You can browse the Internet within the IDE, enabling you to look up online
resources without moving between multiple application windows. This
built-in browser can also display the Visual Studio .NET Help files for easy
access to the relevant documentation.

Topic Objective
To discuss some overall
benefits of the IDE.

Lead-in
The Visual Basic .NET IDE
provides some significant
benefits over previous
Visual Basic IDEs.

 Module 2: Development Environment Features 3

u Creating Visual Basic .NET Projects

n Choosing a Project Template

n Analyzing Project Structures

n What Are Assemblies?

n Setting Project References

n What Are Namespaces?

n Creating Namespaces

n Importing Namespaces

n Setting Project Properties

Many aspects of project development in Visual Basic .NET are similar to those
in previous versions of Visual Basic. You still have a range of project templates
to choose from, you still need to reference other projects and applications, and
you still need to set project properties. Visual Basic .NET provides
enhancements to these and other aspects of project development.

In this lesson, you will become familiar with the project templates provided by
Visual Basic .NET. After completing this lesson, you will be able to:

n Choose the correct template for your project.

n Explain how various Visual Basic .NET projects are structured.

n Explain what assemblies are and how to create them.

n Reference other code from your project.

n Create and use namespaces in your projects.

n Use the Imports statement to access objects.

n Set various project properties that affect how your application behaves.

Topic Objective
To introduce the topics in
this lesson.

Lead-in
Many concepts in
Visual Basic .NET project
creation will be familiar to
you.

4 Module 2: Development Environment Features

Choosing a Project Template

n Windows Application

n Class Library

n Windows Control Library

n ASP .NET Web Application / Service / Control Library

n Console Application

n Windows Service

n Others

Visual Basic developers are used to having multiple project templates to choose
from when starting a new project. Visual Basic .NET provides many familiar
templates along with a range of new ones.

Template Use this template to create:

Windows Application Standard Windows -based applications.

Class Library Class libraries that provide similar functionality to
Microsoft ActiveX® dynamic-link libraries (DLLs) by
creating classes accessible to other applications.

Windows Control Library User-defined Windows control projects, which are
similar to ActiveX Control projects in previous versions
of Visual Basic.

ASP .NET Web
Application

Web applications that will run from an Internet
Information Services (IIS) server and can include Web
pages and XML Web services.

ASP .NET Web Service Web applications that provide XML Web Services to
client applications.

Web Control Library User-defined Web controls that can be reused on Web
pages in the same way that Windows controls can be
reused in Windows applications.

Console Application Console applications that will run from a command line.

Windows Service Windows services that will run continuously regardless
of whether a user is logged on or not. Previous versions
of Visual Basic require you to use third-party products or
low-level application programming interface (API) calls
to create these types of applications.

Other Other templates exist for creating enterprise applications,
deployment projects, and database projects.

Topic Objective
To discuss the various
Visual Basic .NET project
templates.

Lead-in
As in previous versions of
Visual Basic, you can
choose from a variety of
project templa tes to assist
you in the creation of a new
project.

Delivery Tip
Point out that students will
use many of these project
templates during the
remainder of the course.

 Module 2: Development Environment Features 5

Analyzing Project Structures

n Solution Files (.sln, .suo)

n Project Files (.vbproj)

n Local Project Items

l Classes, forms, modules, etc. (.vb)

n Web Project Items

l XML Web services (.asmx)

l Web forms (.aspx)

l Global application classes (.asax)

Each project contains a variety of files unique to the type of project. To
simplify management, the project files are usually stored within the same
project directory.

n Solution files (.sln, .suo)

The .sln extension is used for solution files that link one or more projects
together, and are also used for storing certain global information. These files
are similar to Visual Basic groups (.vbg files) in previous versions of
Visual Basic. Solution files are automatically created within your
Visual Basic .NET projects, even if you are only using one project in the
solution.

The .suo file extension is used for Solution User Options files that
accompany any solution records and any customizations you make to your
solution. This file saves your settings, such as breakpoints and task items, so
that they are retrieved each time you open the solution.

n Project files (.vbproj)

The project file is an Extensible Markup Language (XML) document that
contains references to all project items, such as forms and classes, as w ell as
project references and compilation options. Visual Basic .NET project files
use a .vbproj extension, which allows you to differentiate between files
written in other .NET-compatible languages (Microsoft C# uses .csproj).
This makes it easy to include multiple projects that are based on different
languages within the same solution.

Topic Objective
To discuss the structure of
Visual Basic .NET projects.

Lead-in
Visual Basic .NET projects
contain various types of files
that you use depending on
the type of project you are
creating.

6 Module 2: Development Environment Features

n Local project items (.vb)

Previous versions of Visual Basic use different file extensions to distinguish
between classes (.cls), forms (.frm), modules (.bas), and user controls (.ctl).
Visual Basic .NET allows you to mix multiple types within a single .vb file.
For example, you can create more than one item in the same file. You can
have a class and some modules, a form and a class, or multiple classes all
within the same file. This allows you to keep any strongly related items
together in the same file; for example, the Customer and Address classes.

Any files that are not based on a programming language have their own
extension; for example, a Crystal Report file (.rpt) or text file (.txt).

n Web project items (.aspx., .asmx, .asax)

Web projects store their items in a Web server virtual directory and in an
offline cache. Like local project items, Web project items also use the .vb
file extension for classes and modules. However, Web project items include
Web-specific files, such as .aspx for Web Forms, .asmx for XML Web
Services, and .asax for global application classes.

For more information about Web projects, see Module 7, “Building Web
Applications,” in Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease).

Delivery Tip
Explain that you can store
more than one item in the
same file, such as two
classes in a single .vb file.
This allows you to keep
related classes together for
easy maintenance.

Note

 Module 2: Development Environment Features 7

What Are Assemblies?

n An Assembly is One or More .exe or .dll Files That Make
Up a Visual Studio .NET Application

n The .NET Framework Provides Predefined Assemblies

n Assemblies Are Created Automatically When You
Compile Source Files

l Click Build on the Build menu

l Use the command-line command vbc.exe

An assembly is one or more .exe or .dll files that make up a Visual Studio .NET
application. Assemblies are a key concept in .NET development; they serve as a
building block for all .NET applications. The .NET Framework provides many
predefined assemblies for you to reference within your projects. These
assemblies provide the classes and functionality of the common language
runtime that enables your applications to work.

Assemblies are created automatically when you compile Visual Studio .NET
source files. To create an assembly, compile your application by clicking Build
on the Build menu. You can also use the command-line command vbc.exe to
compile an assembly. Your assembly can then be referenced by other
applications, in much the same way that ActiveX components can be referenced
in previous versions of Visual Basic.

For more information about assemblies, see Module 10, “Deploying
Applications,” in Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease).

Topic Objective
To explain how assemblies
are created.

Lead-in
Assemblies are a key
concept in the .NET
Framework. They are the
building block of all .NET -
compatible applications.

Delivery Tip
Point out that assemblies
will be discussed in more
detail later in the course but
make sure students
understand the basic
concepts at this stage.

Note

8 Module 2: Development Environment Features

Setting Project References

n .NET Assemblies

n COM Components

n Projects

You can set project references to other applications or code libraries in order to
use the functionality these applications provide. You can set project references
to other .NET assemblies, existing COM components, or other .NET projects
within the same .NET solution.

To add a reference:

1. Select the current project in Solution Explorer. On the Project menu, click
Add Reference .

2. In the Add Reference dialog box, select the appropriate type of reference
by clicking the .NET, COM, or Projects tab.

3. Only projects within the same solution are displayed in the Projects tab.

4. Browse for the appropriate item if the item is not displayed in the list of
available components.

After you set a reference, you can use it in the same way that you use COM
components in previous versions of Visual Basic. You can view information
about the reference in the Object Browser and create code that uses the
functionality of the reference.

Topic Objective
To discuss how to reference
external code by setting a
project reference.

Lead-in
Most projects reference
other applications or code
libraries to use the
functionality that they
provide. Use the Add
Reference dialog box to set
project references.

 Module 2: Development Environment Features 9

What Are Namespaces?

n Namespaces Organize Objects Defined in an Assembly

l Group logically related objects together

n Namespaces Create Fully Qualified Names for Objects

l Prevent ambiguity

l Prevent naming conflicts in classes

Namespaces are used in .NET Framework assemblies to organize the objects of
an assembly (classes, interfaces, and modules) into a structure that is easy to
understand.

Namespaces group logically related objects together so that you can easily
access them in your Visual Basic .NET code. For example, the SQLClient
namespace defined within the System.Data assembly provides the relevant
objects required to use a Microsoft SQL Server™ database.

When you prefix an object with the namespace it belongs to, the object is
considered to be fully qualified. Using unique, fully qualified names for objects
in your code prevents ambiguity. You can declare two classes with the same
name in different namespaces without conflict.

Topic Objective
To explain the role that
namespaces play in .NET
development.

Lead-in
Namespaces play an
integral role in .NET
development.

10 Module 2: Development Environment Features

Creating Namespaces

n Use Namespace … End Namespace Syntax

n Use the Root Namespace Defined in Assembly
Properties

Namespace Top ' F u l l y q u a l i f i e d a s MyAssembly.Top

P u b l i c C l a s s I n s i d e ' F u l l y q u a l i f i e d a s MyAssembly. T o p . I n s i d e
. . .

End Class

Namespace Ins ideTop ' F u l l y q u a l i f i e d a s MyAssembly.Top. Ins ideTop
P u b l i c C l a s s I n s i d e
' F u l l y q u a l i f i e d a s MyAssembl y.Top. Ins ideTop. I n s i d e

. . .
End Class

End Namespace
End Namespace

Namespace Top ' F u l l y q u a l i f i e d a s MyAssembl y.Top

P u b l i c C l a s s I n s i d e ' F u l l y q u a l i f i e d a s MyAssembl y. T o p . I n s i d e
. . .

End Class

Namespace Ins ideTop ' F u l l y q u a l i f i e d a s MyAssembl y.Top. Ins ideTop
Pub l i c C lass I ns ide
' F u l l y q u a l i f i e d a s MyAssembly. Top. Ins ideTop. I n s i d e

. . .
End Class

End Namespace
End Namespace

You can create your own namespaces in an assembly by creating a block of
code that uses the Namespace…End Namespace syntax. The following
example shows how to create a namespace named Customers:

Namespace Customers
 'Create classes, modules, and interfaces
 'Related to Customer information
End Namespace

The assembly usually defines a root namespace for the project that is set in the
Project Properties dialog box. You can modify or delete this root namespace if
you choose to. The following example shows code in an assembly that has a
root namespace named MyAssembly:

Namespace Top
'Fully qualified as MyAssembly.Top

 Public Class Inside
 'Fully qualified as MyAssembly.Top.Inside
 ...
 End Class

 Namespace InsideTop
 'Fully qualified as MyAssembly.Top.InsideTop

 Public Class Inside
 'Fully qualified as MyAssembly.Top.InsideTop.Inside
 ...
 End Class
 End Namespace
End Namespace

Topic Objective
To explain how to create
namespaces.

Lead-in
You can create your own
namespaces or use the
namespaces that are
defined in the assembly
properties.

Delivery Tip
This is an animated slide. It
begins by showing the bullet
points only. Click the slide to
reveal the following
sections:
1. Top namespace
2. Inside class
3. InsideTop namespace

 Module 2: Development Environment Features 11

The following example shows how code from the same assembly, but outside
of the Top namespace, calls classes. Notice that the MyAssembly namespace is
not required as part of the fully qualified name, because this code also resides in
the MyAssembly namespace.

Public Sub Perform()
 Dim x As New Top.Inside()
 Dim y As New Top.InsideTop.Inside()
 ...
End Sub

12 Module 2: Development Environment Features

Importing Namespaces

n Fully Qualified Names Can Make Code Hard to Read

n Using The Imports Statement Results in Simpler Code
by Providing Scope

n Import Aliases Create Aliases for a Namespace or Type

Di m x as MyAssembl y . Top. Ins ideTop . I n s i d eDi m x as MyAssembly. Top. InsideTop . I ns i de

I mports MyAssembly. Top. Ins ideTop
. . .
Di m x a s I n s i d e

I mports MyAssembl y.Top. I nsideTop
. . .
Di m x as Ins ide

I mports IT = MyAssembl y .Top. Ins ideTop
. . .
Di m x a s I T . I n s i d e

I mports IT = MyAssembl y . Top. Ins ideTop
. . .
Di m x a s I T . I n s i d e

You can access any object in an assembly by using a fully qualified name. The
problem with this approach is that it makes your code difficult to read, because
variable declarations must include the entire namespace hierarchy for you to
access the desired class or interface.

Using the Imports Statement
You can simplify your code by using the Imports statement. The Imports
statement allows you to access objects without using the fully qualified name.
The Imports statement does not just point to namespaces in other assemblies.
You can also use it to point to namespaces in the current assembly.

The following examples compare two methods for accessing the
InsideTop.Inside class from an external assembly:

n Example using the fully qualified name:

Module ModMain
 Sub Perform()
 'Fully qualified needed
 Dim x as New MyAssembly.Top.InsideTop.Inside()
 ...
 End Sub
End Module

Topic Objective
To explain how imports and
aliases can simplify code.

Lead-in
Referencing the full
namespace makes code
difficult to read. You can
avoid this by using the
Imports statement and
aliases.

 Module 2: Development Environment Features 13

n Example using the Imports statement:

Imports MyAssembly.Top.InsideTop

Module ModMain
 Sub Perform()
 Dim x As New Inside() 'Fully qualified not needed
 ...
 End Sub
End Module

Import Aliases
You can use the Imports statement to create import aliases for parts of
namespaces. Import aliases provide a convenient way to access items in a
namespace. They prevent naming conflicts but still make code easy to write and
understand.

The following example creates an import alias called IT for the
MyAssembly.Top.InsideTop namespace. You can reference any item
belonging to the namespace by using the IT import alias.

Imports IT = MyAssembly.Top.InsideTop

Module ModMain
 Sub Perform()
 Dim x As New IT.Inside() 'Alias used
 ...
 End Sub
End Module

14 Module 2: Development Environment Features

Setting Project Properties

n Common Property Settings

l Defining assembly name

l Root namespace

l Project output type

l Startup object

l Importing project-level namespaces

n Configuration Property Settings

l Debugging settings

l Build options

You can specify many project properties in the project Property Pages dialog
box. These properties affect how the project behaves both in the IDE and after
it is compiled.

The following screen shot shows the project Property Pages dialog box for an
application named SimpleApp:

Topic Objective
To describe project
properties and how to set
them.

Lead-in
Visual Basic .NET provides
many project properties that
can affect how your project
behaves.

Delivery Tip
The project property pages
are shown during the next
demonstration, Creating a
Visual Basic .NET Project.

 Module 2: Development Environment Features 15

Some of the Common Property settings are listed below.

Property Use this property to:

Assembly name Specify the name of the assembly when compiled into an .exe

or .dll file.

Root namespace Change the root namespace without affecting the name of the
assembly. (A default root namespace is created when you
create the project.) This property affects any fully qualified
names used for variable declaration.

Project output type Choose what type of assembly is generated when your project
is compiled. You can select Windows Application (.exe),
Console Application (.exe), or Class Library (.dll).

Startup object Select an entry point for your application. This is usually the
main form of your application or a Sub Main procedure.

Class libraries cannot have a startup object.

Importing project-
level namespaces

Import multiple namespaces. They are then automatically
accessible without forcing you to use the Imports statement in
each file within the project.

Some of the frequently used Configuration Property settings are listed below.

Property Purpose

Debugging settings These properties allow you to set debugging options, like for

previous versions of Visual Basic. You can choose how your
application starts up when debugging by simply starting the
project, starting an external program that calls your code, or
displaying a Web page from a URL that calls your code. You
can also specify any command-line arguments your application
needs for testing purposes.

Build options You can specify an output directory for your compiled code
(\bin is the default). You can also enable or disable the
generation of debugging information contained in the .pdb file.

16 Module 2: Development Environment Features

Demonstration: Creating a Visual Basic .NET Project

In this demonstration, you will learn how to create a Visual Basic .NET project
based on the project templates. You will also learn about the files that comprise
the project structure and how to create a reference to another assembly.

Topic Objective
To demonstrate how to
create a Visual Basic .NET
project.

Lead-in
This demonstration will
show you how to create a
Visual Basic .NET project by
using the project templates.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 2: Development Environment Features 17

u Using Development Environment Features

n Using Solution Explorer

n Using Server Explorer

n Using the Object Browser

n Using the Task List

n Using Dynamic Help

n Using XML Features

n Recording and Using Macros

The Visual Studio .NET IDE contains several features that enable more
efficient development of projects. Some of these features are enhancements of
existing Visual Basic features. Others are amalgamated from other sources,
such as Microsoft Visual InterDev®.

After completing this lesson, you will be able to:

n Use IDE tools such as Solution Explorer, Server Explorer, Object Browser,
and Task List.

n Use Dynamic Help while developing your Visual Basic .NET applications.

n Edit XML documents in the IDE.

n Record and use macros for repetitive tasks in your projects.

Topic Objective
To introduce the topics
covered in this lesson.

Lead-in
The development
environment contains many
enhanced features that
make developing
Visual Basic .NET projects
faster and more efficient.

Delivery Tip
Several of the IDE windows
will be familiar to
Visual Basic developers, so
detailed discussion should
not be required.

18 Module 2: Development Environment Features

Using Solution Explorer

n Displays Project Hierarchy

l Project references

l Forms, classes, modules

l Folders with subitems

n “Show All Files” Mode

n Manipulating Projects

l Drag-and-drop editing

l Context menus

Solution Explorer displays your project hierarchy, including all project
references; project items such as forms, classes, modules, and so on; and any
subfolders that contain project items. If your solution contains more than one
project, you will see the same sort of hierarchy used in previous versions of
Visual Basic when a project group exists.

“ Show All Files” Mode
By default, Solution Explorer only shows some of the files stored in the project
hierarchy. Certain files, which do not form an integral part of the solution, may
be hidden or marked as excluded from the project, such as the files in the bin
and obj folders on the slides. These files become visible when you click the
Show All Files toolbar button. This option allows you to see items that are
copied manually to the project folders. The slide associated with this topic
shows a screen shot of this view of Solution Explorer.

Manipulating Projects
The following features allow you to manipulate your projects with Solution
Explorer:

n Drag-and-drop editing

You can use drag-and-drop editing to move existing project items between
folders.

n Context menus

Most items provide context menus that allow you to perform standard
actions, such as adding to the project, deleting items from the project, and
excluding items from the project, which removes the file from the project
but does not delete the file. If you use Microsoft Visual SourceSafe®, you
can add items to Visual SourceSafe from Solution Explorer.

Topic Objective
To discuss how to use
Solution Explorer.

Lead-in
Solution Explorer enhances
the Project Explorer found in
previous versions of
Visual Basic.

 Module 2: Development Environment Features 19

Using Server Explorer

n Managing Data
Connections

n Viewing and Managing
Servers

n Using Drag-and-Drop
Techniques

In previous versions of Visual Basic, you can manipulate databases by using the
Data View window. Server Explorer provides the same functionality and
additional functionality for managing and using server components.

Managing Data Connections
To use Server Explorer to manipulate a database, add a connection to the server
by clicking Connect to Database on the Server Explorer toolbar. This action
brings up the Data Link Properties dialog box. After a connection is
established, you can view and manipulate the database diagrams, tables, views,
stored procedures, and functions.

Topic Objective
To discuss Server Explorer
and how it can assist in
project development.

Lead-in
Server Explorer allows you
to establish data
connections similar to the
Data View window in
Visual Basic 6.0. However,
Server Explorer also has the
ability to manage and use
specific aspects of a server.

20 Module 2: Development Environment Features

Viewing and Managing Servers
You can also use Server Explorer to view and manage various server items
from within the Visual Studio .NET IDE.

Server item Purpose

Event Logs View system event logs for application, security, and system

events. The Properties window displays information about each
particular event. You can use the context menu to clear the log.

Message Queues Use message queues to send messages asynchronously between
applications. You can view and manipulate any message queues
located on the server by using the context menu for the item.

Performance
Counters

Use the many performance counters provided by the Windows
platform to monitor system-level and application-level
interactions, such as the total number of logons to the server.

Services Start and stop Windows services from Server Explorer by using
context menus.

SQL Servers View and manage Microsoft SQL Server™ databases directly
from Server Explorer in the same way that you view and
manage data connections.

Using Drag-and-Drop Techniques
You do not use Server Explorer just for viewing and managing server items.
You can use drag-and-drop techniques to place items (such as fields from a
database) on your forms, or to manipulate server items (such as starting or
stopping a Windows service) from within your Visual Basic .NET code.

 Module 2: Development Environment Features 21

Using the Object Browser

n Examine Objects and
Their Members

n Access Lower-level Items

l Shows inheritance
and interfaces

n Examine How the .NET
Framework Class
Libraries Use Inheritance

Class Namespace

Method

Library

Inheritance

Visual Basic .NET enhances the Object Browser found in previous versions of
Visual Basic. Previous versions of the Object Browser show only a high-level
view of objects and their methods. Using the Visual Basic .NET Object
Browser, you can:

n Examine objects and their members within a library, exploring the object
hierarchy to find details about a particular method or item.

n Access lower-level items, such as interfaces and object inheritance details.

n Examine how the .NET Framework class libraries use inheritance in their
object hierarchies.

Topic Objective
To describe new features of
the Object Browser.

Lead-in
Visual Basic .NET enhances
the Object Browser found in
previous versions of
Visual Basic.

22 Module 2: Development Environment Features

The following screen shot shows the Microsoft Visual Basic .NET Runtime
library and its various namespaces. This screen shot highlights the
Microsoft.VisualBasic namespace and shows the classes it contains, including
the highlighted class Interaction, which inherits characteristics from the
System.Object class.

 Module 2: Development Environment Features 23

Using the Task List

n Similar to the Tasks Feature in Microsoft Outlook

n Stored with the Solution in the .suo File

n Adding to the Task List

l You can add tasks manually by typing in appropriate field

l Visual Basic .NET adds build errors, upgrade comments , etc.

l You can use token strings to add comments in code

If you use Microsoft Outlook®, you may be familiar with the Tasks feature.
You can use this feature to maintain a list of tasks that you are working on or
tracking, and you can clear tasks when you complete them. Visual Studio .NET
provides the same functionality through a Task List window, which keeps track
of solution-level tasks that you must complete.

Tasks are kept in the .suo project file so that you do not lose information when
you close your Visual Studio .NET session. Any stored tasks are available to all
developers that use the same .suo project files.

Tasks can be added to your Task List in three ways:

n You can manually add tasks to the task list by typing in the top row that is
always visible in the Task List window.

n Visual Studio .NET automatically adds tasks to the list when you attempt to
build your application, when you upgrade from a Visual Basic 6.0 project,
or at various other stages during the project. This allows you to keep track
of what you must do to successfully complete your project.

n You can add tasks by creating comments in your code that use specific
token strings defined in the Options dialog box, which is accessible from
the Tools menu. The TODO, HACK, and UNDONE tokens have been
created for you, but you can define your own.

The following example shows a code section that uses the TODO token and a
custom token named FIX_ASAP:

'TODO create icons for form
'FIX_ASAP bug in form code

Topic Objective
To describe how to use the
Task List feature.

Lead-in
The IDE provides a Task
List to track tasks that are
awaiting completion and that
are related to a particular
solution.

24 Module 2: Development Environment Features

The following screen shot shows how the Task List window displays
information based on this example, with three extra items that have been added
to the list manually:

The following screen shot shows how to use the Options dialog box to create
the FIX_ASAP token. Notice that the token has been created so that the items
in the Task List display a High priority icon.

 Module 2: Development Environment Features 25

Using Dynamic Help

n Automatically Displays
Relevant Help Topics
Based on Focus and
Cursor Placement

n Use the Options Dialog
Box to Configure the
Dynamic Help Window

The Dynamic Help window automatically displays appropriate Help links to
the .NET Help files, depending on where the cursor is and what text is
highlighted. As you move from one window to another within the IDE,
information displayed in the Dynamic Help window changes. If you are typing
Visual Basic syntax, you see the appropriate Help topic for the syntax you are
typing.

For example, the results that the Dynamic Help displays for the following
statement vary depending on where the cursor is positioned:

Dim x As Integer

n If the cursor is positioned within the Dim keyword, the Dynamic Help
window displays links relevant to the Dim keyword at the top of the list.

n If the cursor is positioned within the Integer keyword, the Dynamic Help
window displays links relevant to integer types at the top of the list.

Topic Objective
To explain how to use
Dynamic Help.

Lead-in
The Visual Studio .NET IDE
introduces a new form of
assistance that displays
Help links dynamically,
based on your current
requirements.

Delivery Tip
Point out to students that
the cursor position is not
tracked if the Dynamic Help
window is not displayed.

26 Module 2: Development Environment Features

You can use the Options dialog box on the Tools menu to configure the items
that the Dynamic Help window displays. The following screen shot shows how
to use the Options dialog box to configure the Dynamic Help window:

 Module 2: Development Environment Features 27

Using XML Features

n HTML and XML Document Outline Window

n AutoComplete

n Color-Coding

n Data View for Manipulating Data

Enterprise applications often use XML documents to specify information as
part of the application architecture.

The Visual Studio .NET IDE provides several useful features for creating and
editing XML documents, as described in the following table.

XML feature Description

Hypertext Markup Language
(HTML) and XML Document
Outline window

Provides a view of the hierarchy of HTML and XML
documents within the application.

AutoComplete Automatically creates the closing tags when you
create either HTML or XML starting tags.

This feature can be switched off in the Options
dialog box.

Color-coding Assists in distinguishing tags from data.

Data View for manipulating
data

Allows you to add items to your XML data hierarchy
and edit existing information.

Provides hyperlinks for navigation to lower-level
items in the XML hierarchy.

Topic Objectiv e
To explain how to use the
XML features provided by
the IDE.

Lead-in
Many of your
Visual Basic .NET
applications will use XML
documents to store or
retrieve information. The
IDE provides several XML
features that make it easier
for you to use these types of
documents.

Delivery Tip
There is a Bookstore.xml file
in the DemoCode folder for
this module. You can use
this file to demonstrate the
Document Outline window
and color-coding features.

28 Module 2: Development Environment Features

Recording and Using Macros

n You Can Use Macros for
Repetitive Tasks such as
Inserting Comments

n Macro Explorer Provides
Macro Navigation

n The IDE Provides Samples:

l Toggle line numbering

l Saving/loading Window
Views

l Debugging macros

n To Record New Macros, Go
to the Tools/Macros Menu

Macros allow users to perform repetitive tasks with the click of a button or
menu item. The Visual Studio .NET IDE provides macros, so you can automate
tasks that require tedious work, such as inserting standard comments into your
code.

The Macro Explorer allows you to edit, rename, delete, or run your macros
within the IDE.

Several sample macros are included in the IDE, including the following:

n Toggle line numbering macros

n Saving or loading Window Views macros

n Debugging macros

You can use any of the sample macros in your projects by executing them in the
Command window or placing them on menus or toolbars.

To record your own macros:

1. On the Tools menu, point to Macros, and then click Record Temporary
Macro.

2. Perform the actions that you wish to record, such as inserting comments in
the current module.

3. Click Stop Recording on the Recorder toolbar to stop recording your
macro.

4. Your macro is saved with a temporary name visible in the Macro Explorer.
You can rename the temporary macro to save your macro with an
appropriate name.

Any macros you create are stored in a subdirectory of the Visual Studio
Projects folder in My Documents.

Topic Objective
To explain how to record
and use macros in the IDE.

Lead-in
You may be familiar with
macros in Microsoft Word or
Microsoft Excel. Now you
can use macros in
Visual Studio .NET.

 Module 2: Development Environment Features 29

Demonstration: Using the Visual Studio .NET IDE

In this demonstration, you will learn how to use several features of the
Visual Studio .NET IDE, including Solution Explorer, Server Explorer, and
XML editing tools.

Topic Objective
To demonstrate how to use
the windows that make up
the Visual Studio .NET IDE.

Lead-in
This demonstration shows
how to use Solution
Explorer and Server
Explorer, and how to edit an
XML document in the
Visual Studio .NET IDE.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

30 Module 2: Development Environment Features

u Debugging Applications

n Setting Breakpoints

n Debugging Code

n Using the Command Window

The Visual Studio .NET IDE provides enhanced versions of many of the
debugging features found in previous versions of Visual Basic, along with
several powerful features found in Visual C++.

After completing this lesson, you will be able to:

n Set breakpoints.

n Debug code in a Visual Basic .NET project.

n Use the Command window while designing and debugging applications.

Topic Objective
To introduce the topics
covered in this lesson.

Lead-in
The new IDE provides
enhanced debugging
features based on those
found in previous versions
of Visual Basic.

 Module 2: Development Environment Features 31

Setting Breakpoints

n Set Breakpoints to Halt Code Execution at a Specific Line

n Use the Breakpoint Properties Dialog Box to
Set Conditions

Breakpoints halt execution of code at a specific line. You can set breakpoints at
design time or during a debugging session.

There are several ways you can set a breakpoint:

n Click the margin to the left of the code window on the line containing the
statement where you want the debugger to halt.

n On the Debug menu, click New Breakpoint, and choose from the various
options.

n Place the cursor on the line where you want the debugger to halt. Press F9
to switch the breakpoint on or off.

You can use the Breakpoint Properties dialog box to make a conditional
breakpoint. This feature works in a way similar to watch expressions in
previous versions of Visual Basic. You set a breakpoint condition that only
halts execution when a particular condition is true or when a variable has
changed.

The following screenshot shows a breakpoint condition that only halts when a
variable x has a value of 10.

Topic Objective
To explain how to set
breakpoints.

Lead-in
Setting breakpoints in your
project allows you to step
into your code under a
variety of conditions.

32 Module 2: Development Environment Features

You may also want to halt execution only when the breakpoint has been
reached and the breakpoint condition has been satisfied a specific number of
times. This number is called the hit count.

To set a breakpoint hit count:

1. In the Breakpoint Properties dialog box, click Hit Count.

2. In the Breakpoint Hit Count dialog box, choose the type of hit count test
that you want to perform from the drop-down combo box, enter the
appropriate hit count value, and then click OK.

The following screen shot shows how you specify that you want execution to
stop the third time that the breakpoint is reached and the breakpoint condition is
satisfied:

 Module 2: Development Environment Features 33

Debugging Code

n Use the Debug Menu or Toolbar to Step Through Code

n Use the Debugging Windows:

l Locals: to view and modify local variables

l Output: to view output from the compiler

l Watch: to view watch expressions

l Call Stack: to view call history, including parameter
information

l Breakpoints: to view, add, or temporarily disable
breakpoints

Debugging your code in Visual Basic .NET is similar to debugging code in
previous versions of Visual Basic. When code execution stops at the breakpoint,
you can step through the code by using the Debug menu or toolbar.

All of the debugging windows found in previous versions of Visual Basic are
available in Visual Basic .NET, but with some enhancements.

Debug window Use this window to:

Locals View and modify variables.

This window provides explicit details about objects, such as
inheritance information. The tree view of this window is
particularly useful for viewing values in an object hierarchy.

Output View output information from the compiler, such as the number of
compilation errors that occurred and what libraries were loaded.

You can use the Debug.Writeline statement to print information to
the Output window. This statement replaces the Debug.Print
statement in previous versions of Visual Basic.

Watch View and manipulate any watch expressions.

To add values to the Watch window, type in the Name column of
an empty row, or click Quick Watch on the Debug menu. This
allows you to quickly add watch expressions during your
debugging session.

Unlike in previous versions of Visual Basic, you cannot set watch
conditions. These have been replaced by breakpoints conditions in
Visual Basic .NET.

Topic Objective
To discuss how to debug
code and use the various
debugging windows.

Lead-in
Several aspects of
debugging in
Visual Basic .NET will be
familiar to Visual Basic
developers.

34 Module 2: Development Environment Features

(continued)

Debug window Use this window to:

Call Stack View the history of calls to the line of code being debugged.

This window displays the history of the call, including any
parameters to procedures and their values.

Breakpoints View a list of current breakpoints, including information such as
how many times the breakpoint has been called, and the conditions
the breakpoint has met.

You can also add new breakpoints and temporarily disable
breakpoints in this window.

 Module 2: Development Environment Features 35

Using the Command Window

n Immediate Mode

l Similar to the Immediate
window

n Command Mode

l Use Visual Studio IDE
features

n Switching Modes

l Use >cmd to change to
Command mode

l Use immed to return to
Immediate mode

In Immediate mode, the Command window in Visual Basic .NET provides
functionality similar to that found in the Immediate window in previous
versions of Visual Basic. You can query local variables while debugging and
change their values under certain conditions. You can also run procedures in
your code or other .NET Framework class libraries while you are in Immediate
mode.

The Command window also has a second purpose. In Command mode, you can
use features of the Visual Studio .NET IDE. The features you can use while in
Command mode include the following:

n The Debug.Start command, to start debugging

n The Help command, to display the Visual Studio .NET documentation

n The Exit command, to quit the Visual Studio .NET IDE

n Any macros that you recorded

n Any macros that the IDE provides as samples

To switch between the two modes of the Command window:

n Use the >cmd command to switch from Immediate mode to Command
mode.

You can issue single commands in Immediate mode by prefixing your
command with the > symbol.

n Use the immed command to switch from Command mode to Immediate
mode.

Topic Objective
To explain the purpose of
the Command window.

Lead-in
The Command window
combines features found in
the Immediate window of
previous versions of
Visual Basic with a
command-line utility.

36 Module 2: Development Environment Features

The following example shows various commands in both Immediate and
Command mode. The window is initially in Immediate mode during a
debugging session.

?newValue
12
newValue=44
?newValue
44
>Debug.StopDebugging
>cmd
>help
>Debug.Start
>immed
?newValue
12

The following steps are executed in this code:

1. The example shows a local variable named newValue with a value of 12.

2. In Immediate mode, this value is changed to 44.

3. The variable is queried again to confirm the change.

4. A single command is issued to stop debugging.

5. The cmd command is used to switch to Command mode.

6. The help command is used to display the Visual Studio .NET
documentation.

7. The Debug.Start command is used to start debugging.

8. The immed command is used to switch back to Immediate mode.

9. The newValue variable is tested again.

 Module 2: Development Environment Features 37

Demonstration: Debugging a Project

In this demonstration, you will learn how to use the debugging features of the
Visual Studio .NET IDE to debug a simple Visual Basic .NET project.

Topic Objective
To demonstrate how
to debug a simple
Visual Basic .NET project.

Lead-in
This demonstration shows
how to debug a simple
Visual Basic .NET project.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

38 Module 2: Development Environment Features

u Compiling in Visual Basic .NET

n Locating Syntax Errors

n Compilation Options

After completing this lesson, you will be able to:

n Locate syntax errors when you attempt to build your application.

n Select the best compilation option for building your Visual Basic .NET
projects.

Topic Objective
To introduce the topics
covered in this lesson.

Lead-in
Compiling an application in
Visual Basic .NET…

 Module 2: Development Environment Features 39

Locating Syntax Errors

n The Task List Displays Compilation Errors

l Displays error description, file, and line number

n Double-Click the Entry to View the Error

d

Visual Basic .NET displays compilation errors as you type each statement in
your application code. If you ignore these warnings and attempt to build your
application, the Task List is displayed, with all build errors included on the list.

Information about the error includes the error description, the file in which the
error occurred, and the line number. The error description is the same
information that you see if you position the cursor over the highlighted part of
your code in the code window.

You can edit the errors by double-clicking the appropriate entry in the Task List.
This positions the cursor in the correct file and exact line where the error is
located, so you can make the required modifications. As soon as you complete
your changes and you move off the modified line, the Task List entries are
updated.

Topic Objective
To explain how to locate
syntax errors when
attempting to build an
application.

Lead-in
You can immediately
address syntax errors when
you attempt to build your
project.

40 Module 2: Development Environment Features

Compilation Options

n Build Configurations

l Debug – provides debug information

l Release – optimizes code and executable size

n Build Options

l Build – only builds changed projects

l Rebuild – rebuilds project regardless of changes

l Batch Build – builds multiple versions of projects

l Clean – deletes intermediary files and directories

The Visual Studio .NET IDE provides several compilation options for building
your Visual Basic .NET projects.

Build Configurations
There are two types of build configurations for Visual Basic .NET projects:

n Debug

During the development phase, you may want to build and test your
applications by using compiled assemblies. The Debug configuration
produces a .pdb file that contains debugging information. Other applications
can use this file to debug your code. To assist these other applications, no
optimizations are made to your code. Other applications have access to your
complete and original code.

n Release

After testing is completed, you will want to deploy your application to client
computers. The Release configuration performs various code optimizations
and attempts to minimize the size of the executable file. No debugging
information is generated for a Release configuration build.

Build Options
You can choose what to build by selecting the appropriate Build menu options.

n Build

The Build option only builds project items whose code has changed since
they were last compiled.

n Rebuild

The Rebuild option compiles all project items even if they have not been
modified since they were last compiled. Use this option when you want to
be sure your application contains the latest code and resources.

Topic Objective
To describe the options
available when you compile
a project.

Lead-in
There are several
compilation options
available to you when
you compile your
Visual Basic .NET projects.

 Module 2: Development Environment Features 41

n Batch Build

To build more than one version of a project (or multiple projects if they are
loaded in a solution), you can use the Batch Build option. Use this option if
you want to build both Debug and Release versions of your project. The
different builds will be created in the \\obj\Debug and \\obj\Release
subdirectories of the project directory.

The following illustration shows the Batch Build dialog box. It specifies
that both the Debug and Release versions of the SimpleApp project will be
built.

n Clean

The Clean option allows you to create a Clean build of your projects by
deleting all intermediary files and directories. You can use this option to
make sure that you do not inadvertently leave previous versions of
intermediary files and directories on your system.

42 Module 2: Development Environment Features

Lab 2.1: Exploring the Development Environment

Objectives
After completing this lab, you will be able to:

n Use the Visual Studio .NET IDE.

n Create a simple Visual Basic .NET project.

n Set conditional breakpoints.

n Debug an application.

n Use the Task List and Command windows.

Prerequisites
Before working on this lab, you must have experience with developing
applications in an earlier version of Visual Basic.

Scenario
In this lab, you will explore the Visual Studio .NET IDE and use its features to
create a data connection and view event log information. You will create a
simple Windows-based application and add a prewritten form to the project.
Finally, you will debug the application by using the various debugging features
of the IDE.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab021\Ex02\Starter folder, and the solution files are
in the install folder\Labs\Lab021\Ex02\Solution folder.

Estimated time to complete this lab: 45 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will explore
the development
environment and debug a
simple application.

Explain the lab objectives.

 Module 2: Development Environment Features 43

Exercise 1
Becoming Familiar with the Visual Studio .NET IDE

In this exercise, you will use Server Explorer to create a data connection for the
Northwind SQL Server database. You will investigate Server Explorer, and the
event logs in particular. You will then view the Options dialog box to become
familiar with the default IDE settings.

The purpose of this exercise is for you to become familiar with the IDE, so take
time to explore any parts of the IDE that are interesting to you.

å To add a data connection by using Server Explorer

1. Open Visual Studio .NET.

2. On the View menu, click Server Explorer.

3. On the toolbar, click Connect to Database. Use the following values to
complete the Data Link Properties dialog box:

Property Value

Server name localhost

Logon information Windows NT Integrated security

Database Northwind

4. Click Test Connection to verify that you have successfully made the
connection, and then click OK.

5. Click OK on the Data Link Properties dialog box.

6. If you are not familiar with the Data View window from previous versions
of Visual Basic or Microsoft Visual InterDev®, explore the list of tables,
views, and stored procedures by expanding the newly created
servername.Northwind.dbo data connection.

å To explore the Application event log

1. Under the Servers node of Server Explorer, expand the name of your
computer.

2. Expand the Event Logs node, and then expand the Application node.

3. Select an EventLogEntry node and view the application entry information
in the Properties window.

å To explore the default IDE configuration options

1. On the Tools menu, click Options.

2. Spend several minutes becoming familiar with the default Environment
settings.

44 Module 2: Development Environment Features

Exercise 2
Creating a Visual Basic .NET Project

In this exercise, you will create a simple Visual Basic .NET project and remove
the default form from the project. You will then add a prewritten form to the
project and change the Startup object property of the project.

The prewritten form displays a text box and a command button. When you
press the button, the value in the text box is sent to a subroutine. This
subroutine verifies that the value is not empty and displays a message based on
the value. If the value is empty, an error message appears.

å To create a new project

1. On the File menu, point to New, and then click Project.

2. In the Project Types box, click the Visual Basic Projects folder.

3. In the Templates box, click Windows Application.

4. Change the name of the project to FirstApp, set the location to
install folder\Labs\Lab021\Ex02, and then click OK.

å To add the test form

1. In Solution Explorer, right-click Form1.vb, click Delete, and then confirm
the deletion warning.

2. On the Project menu, click Add Existing Item.

3. Set the location to install folder\Labs\Lab021\Ex02\Starter, click
frmDebugging.vb, and then click Open.

4. Using Solution Explorer, click frmDebugging.vb, and then click the View
Code button.

5. Examine the code in the btnDebug_Click and PerformValidation
procedures, and ensure that you understand the purpose of the code.

å To set the project startup property
1. In Solution Explorer, right-click FirstApp, and then click Properties.

2. In the Startup object list, click frmDebugging, and then click OK.

3. On the File menu, click Save All to save the project.

 Module 2: Development Environment Features 45

Exercise 3
Using the Debugger

In this exercise, you will use the Visual Studio .NET debugger to debug the
simple application that you created in the previous exercise.

You will set a breakpoint to halt execution in the btnDebug_Click event
handler and use the debugger to step through the subroutine. You will examine
the parameter passed to the PerformValidation procedure and change the
value by using the Locals window. You will then step through the rest of the
code and verify that the correct message appears. Finally, you will modify the
breakpoint so that it is conditional, and use the Command window to perform
various IDE functions.

å To set a breakpoint

1. On the View menu, point to Other Windows, and then click Task List.

2. Right-click anywhere within the Task List window, point to Show Tasks,
and then click All.

3. Double-click the single TODO task to navigate to the comment in the code.

4. Place the pointer on the line immediately after the TODO comment and
press F9, the breakpoint shortcut key.

å To debug the project
1. On the Debug menu, click Start.

2. Enter any value into the text box and then click Debug.

3. When the program execution halts, on the Debug menu, click Step Into.

4. Continue to click Step Into until the PerformValidation procedure begins
execution.

5. Examine the contents of each of the following windows: Locals,
Breakpoints, and Call Stack.

6. In the Locals window, change the value of the strValue variable to a new
value. Do not forget to include the quotation marks around the new value.
Press ENTER.

7. Step through the remaining lines of code, closing any message boxes, until
the form appears again.

46 Module 2: Development Environment Features

å To modify the breakpoint

1. While the form is displayed, move to the Breakpoints window in the IDE.

2. Right-click the breakpoint, and then click Properties.

3. Click Condition, and then set the following condition value:

Condition Break When

txtValue.Text has changed

4. Click OK in the Condition dialog box, and then click OK in the
Breakpoint Properties dialog box.

5. On the form, click Debug. This time your code should execute without
debugging.

6. Change the value in the text box and click Debug. This will cause execution
to halt because you have met the condition of the breakpoint.

7. On the Debug menu, click Continue to allow the execution to complete.

8. In the Breakpoints window, clear the breakpoint check box to disable the
breakpoint. Verify that execution no longer halts, even if you change the
value in the text box.

å To use the Command window

1. Display the Command window and enter the following command:
Debug.StopDebugging. The debugging session will end and the IDE will
return to the design state.

2. If the Command window is no longer displayed, on the View menu, point to
Other Windows, and then click Command Window.

3. In the Command window, enter the Exit command to quit
Visual Studio .NET.

 Module 2: Development Environment Features 47

Review

n Describing the Integrated Development Environment

n Creating Visual Basic .NET Projects

n Using Development Environment Features

n Debugging Applications

n Compiling in Visual Basic .NET

1. List the file extensions for the following Visual Basic .NET files:
Visual Basic .NET project files, classes, and modules.

.vbproj, .vb, and .vb

2. Describe the purpose of namespaces and the Imports keyword.

Namespaces organize the objects and items found in an assembly and
prevent ambiguity when calling an object.

The Imports keyword allows you to access an object from within a
namespace without using the object’s fully qualified name.

3. Describe the purpose of Server Explorer.

Server Explorer allows you to view and manipulate databases and
various server items, such as message queues, event logs, Windows
services, and XML Web Services. You can also use Server Explorer to
access these items from within your code.

4. The Object Browser is exactly the same as in previous versions of Visual
Basic. True or false? If false, explain why.

False. The Object Browser has been enhanced to include inheritance
and interfaces in the object hierarchy.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

48 Module 2: Development Environment Features

5. Describe the purpose of a conditional breakpoint and how to create one.

Conditional breakpoints halt execution when a particular condition is
met, such as when a variable equals a certain value.

To set a conditional breakpoint, you add a standard breakpoint, and
then use the Breakpoint Properties dialog box to modify the conditions.

6. You can only build one version of an application at a time. True or false? If
false, explain why.

False. Using the Batch Build dialog box, you can specify which version
of the application you want to build, such as Debug and Release.

