

Contents

Overview 1

Data Types 2

Using Variables 9

Demonstration: Using Variables and Data
Structures 20

Functions, Subroutines, and Properties 21

Lab 3.1: Working with Variables and
Procedures 29

Exception Handling 36

Demonstration: Structured Exception
Handling 48

Lab 3.2: Implementing Structured
Exception Handling 49

Review 52

Module 3: Language
and Syntax
Enhancements

This course is based on the prerelease version (Beta 2) of Microsoft® Visual Studio® .NET
Enterprise Edition. Content in the final release of the course may be different from the
content included in this prerelease version. All labs in the course are to be completed with
the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 3: Language and Syntax Enhancements iii

Instructor Notes

This module provides students with the knowledge needed to use many of the
new language and syntax enhancements to the Microsoft® Visual Basic ®
language, including variable declaration and initialization, procedure syntax,
structured exception handling, and assignment operator changes.

In the labs, students will create a simple application that uses variables and
procedures to add customers to a customer array. The students will then add
structured exception handling to the application.

After completing this module, students will be able to:

n Describe the changes to data types in Visual Basic .NET.

n Declare and initialize variables and arrays.

n Use shorthand syntax to assign values to variables.

n Implement functions and subroutines.

n Call the default properties of an object.

n Use the new Try…Catch…Finally statement to implement structured
exception handling.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_03.ppt

n Module 3, “Language and Syntax Enhancements”

n Lab 3.1, Working with Variables and Procedures

n Lab 3.2, Implementing Structured Exception Handling

Preparation Tasks
To prepare for this module, you should:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstrations.

n Complete the labs.

Presentation:
90 Minutes

Labs:
75 Minutes

iv Module 3: Language and Syntax Enhancements

Demonstrations
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Using Variables and Data Structures
å To test the application

1. Open the DataTypes.sln file in the install folder\DemoCode\
Mod03\DataTypes folder.

2. In the code for frmData.vb, set breakpoints on the first lines of the
TestVariables and TestStructures subroutines.

3. Run the project.

å To debug the Variables button

1. Click the Variables button on the form. The Visual Basic process will halt
at the first breakpoint.

2. Explain the code, pointing out that both intA and intB are created as Integer
data types.

3. Step through the code by using F11, and explain the new assignment
operators and the CType function.

4. Allow the program to continue by pressing F5.

5. Stop the project and uncomment the Option Strict code at the top of the
form code. Attempt to run the project. A compilation error will occur.
Explain why this occurs. Re-comment the Option Strict code, and run the
project to test the Structures code.

å To debug the Structures button

1. Click the Structures button on the form, and step through the
TestStructures subroutine. Point out the Employee structure definition at
the top of the form code before continuing to debug. Note that the array is
initialized to a size of two employees. Continue debugging the code by
using F11. Explain each line when required.

2. Point out the block-level variable iCounter. Allow the remaining code to
execute before closing the form and stopping the debugger.

å To create an out-of-scope variable exception

1. Return to the form code and uncomment the final line in the TestStructures
routine MsgBox(iCounter). Attempt to run the project again, and observe
the error message that is generated because of the attempt to access the
block-level variable outside of its scope.

2. Close the Microsoft Visual Studio® .NET integrated development
environment (IDE).

 Module 3: Language and Syntax Enhancements v

Structured Exception Handling
å To test the application

1. Open the Exceptions.sln solution in the install folder\DemoCode\
Mod03\Exceptions folder.

2. Open the code window for the Errors.vb form and set breakpoints on the
Try statement, each Catch statement, and the Finally statement in the
RunExceptions routine.

3. Run the Exceptions project.

4. Click the Overflow button on the form. The Visual Basic process will halt
at the first breakpoint.

5. Use F11 to step through the code in the Try block, and explain the overflow
details. Explain that the OverflowException class is filtering the exception.
Step through the remaining code, and allow execution to continue.

6. Click the remaining buttons on the test form (Divide , Err.Raise, and
Throw) to demonstrate how the exceptions are handled in each case.

7. End the debugging session by closing the form.

8. Close the Visual Studio .NET IDE.

vi Module 3: Language and Syntax Enhancements

Module Strategy
Use the following strategy to present this module:

n Data Types

This lesson shows some of the new data types and the changes to existing
data types. This lesson also introduces the common type system, the
differences between value and reference types, and the CType keyword that
is essential for converting variables of one data type to another. Creating
objects is not covered in this module, but it may be necessary to point out
some simple syntax in the examples in which the New keyword is used.
This topic will be covered in Module 4, “Object-Oriented Design for
Visual Basic .NET,” in Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease).

It may be worth pointing out that the new Microsoft .NET Framework
classes provide alternative ways to perform many similar tasks that can be
performed in the Visual Basic language. The System.Collections
namespace contains several good examples of these classes.

n Using Variables

This lesson shows how to declare and initialize variables in
Visual Basic .NET and introduces changes to variable scope. The topic of
data structures is introduced. This topic will be covered further in Module 5,
“Object-Oriented Programming in Visual Basic .NET,” in Course 2373A,
Programming with Microsoft Visual Basic .NET (Prerelease). Point out that
Option Explicit is the default compiler option in Visual Bas ic .NET.
Finally, introduce students to the new shorthand syntax for assignment
operators.

n Functions, Subroutines, and Properties

This lesson shows the changes to functions and subroutines, in addition to
the changes to the calling syntax for object properties. Remind students that
object property creation will be covered in Module 5, “Object-Oriented
Programming in Visual Basic .NET,” in Course 2373A, Programming with
Microsoft Visual Basic .NET (Prerelease).

In the default property examples that use ADO Recordset objects, focus the
discussion on the errors generated by incorrect use of default properties.
Other errors may also be generated by assigning incorrect data types to
other variables, but these errors should be ignored.

n Exception Handling

This lesson shows the new structured exception handling syntax and
explains why it is preferable to unstructured exception handling. To create
exceptions by using the Throw statement, as used in the notes and labs,
requires a basic understanding of object construc tors that is not covered
until Module 5, “Object-Oriented Programming in Visual Basic .NET,” in
Course 2373A, Programming with Microsoft Visual Basic .NET
(Prerelease) . Point this out to students and provide a short explanation of
this statement.

 Module 3: Language and Syntax Enhancements 1

Overview

n Data Types

n Using Variables

n Functions, Subroutines, and Properties

n Exception Handling

Microsoft® Visual Basic ® .NET version 7.0 introduces many language and
syntax enhancements that help make it an excellent development tool for the
Microsoft .NET platform. Some of these enhancements include:

n Incorporation of the .NET Framework type system, making
Visual Basic .NET compatible with other languages in the .NET Framework.

n Enhancements to syntax for working with variables, thereby increasing the
clarity and performance of code.

n Changes to functions, subroutines, and properties, making code easier to
read and maintain.

n Structured exception handling, making Visual Basic .NET a more robust
development language.

After completing this module, you will be able to:

n Describe the changes to data types in Visual Basic .NET.

n Declare and initialize variables and arrays.

n Use shorthand syntax to assign values to variables.

n Implement functions and subroutines.

n Call the default properties of an object.

n Use the new Try…Catch…Finally statement to implement structured
exception handling.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about the enhancements to
the Visual Basic language
and syntax in
Visual Basic .NET.

2 Module 3: Language and Syntax Enhancements

u Data Types

n Common Type System

n Comparing Value-Type and Reference-Type Variables

n New Data Types

n Changes to Existing Data Types

n Using CType to Convert Data Types

In this lesson, you will learn about the data types available in
Visual Basic .NET. After you complete this lesson, you will be able to:

n Explain the .NET Framework common type system and how it affects
Visual Basic .NET development.

n Explain the difference between value-type variables to reference-type
variables.

n Describe and use the data types available in Visual Basic .NET.

n Use the CType function to convert values from one data type to another.

Topic Objective
To explain the changes to
data types in
Visual Basic .NET.

Lead-in
This lesson discusses
changes to data types and
how they are used in
Visual Basic .NET code.

 Module 3: Language and Syntax Enhancements 3

Common Type System

n Integrated in the Common Language Runtime

n Shared by the Runtime, Compilers, and Tools

n Controls How the Runtime Declares, Uses, and Manages
Types

n Includes a Set of Predefined Data Types

n Common Type System Objects Are Based on the
System.Object Class

The .NET Framework is based on a new common language runtime. The
runtime provides a common set of services for projects built in
Visual Studio® .NET, regardless of the language. The common type system is
an integral part of the runtime. The compilers, tools, and the runtime itself share
the common type system. It is the model that defines the rules that the runtime
follows when declaring, using, and managing types. The common type system
establishes a framework that enables cross-language integration, type safety,
and high-performance code execution.

All objects in the common type system are based on the System.Object class,
and all data types declared in Visual Basic .NET code correspond directly to a
common type system data-type. For example, when you declare a variable of
type Integer in Visual Basic .NET, it is the same as declaring a System.Int32
common type system data type. The keyword Integer is an alias for the Int32
data type, and it provides familiar syntax to Visual Basic developers.

Topic Objective
To introduce the common
type system.

Lead-in
The common type system
provides predefined data
types for the .NET
Framework.

4 Module 3: Language and Syntax Enhancements

Comparing Value-Type and Reference-Type Variables

n Value-Type Variables

l Directly contain their data

l Each has its own copy of data

l Operations on one cannot affect another

l Assignment creates a copy of the data

n Reference-Type Variables

l Store references to their data (known as objects)

l Two reference variables can reference the same object

l Operations on one can affect another

When you define a variable, you need to choose the right data type for your
variable. The data type determines the allowable values for that variable, which,
in turn, determine the operations that can be performed on that variable. The
common type system supports both value-type and reference-type variables.

Value-Type Variables
Value-type variables directly contain their data. Each value-type variable has its
own copy of data, so operations on one value-type variable cannot affect
another variable.

Examples of value-type variables include integers, doubles, floats and
structures.

Reference-Type Variables
Reference-type variables contain references to their data. The data is stored in
an instance. Two reference-type variables can reference the same object, so
operations on one reference-type variable can affect the object referenced by
another reference-type variable.

Examples of reference-type variables include strings, arrays, and classes.

Topic Objective
To describe differences
between value-type and
reference-type variables.

Lead-in
Value-type and reference-
type variables have
significant differences that
developers need to
understand.

 Module 3: Language and Syntax Enhancements 5

New Data Types

Up to 28 digits on
either side of decimal
(signed)

12 bytesDecimal

-32,768 to 32,7672 bytesShort

0 to 65535 (unsigned)2 bytesChar

Value rangeStorage sizeVisual Basic .NET
data type

There are three new data types available in Visual Basic .NET: Char, Short,
and Decimal.

Char
This data type stores a single Unicode character in a two-byte variable.

Short
In Visual Basic 6.0, a 16-bit integer is an Integer data type. In
Visual Basic .NET, a 16-bit integer is designated as a Short.

Decimal
A Decimal data type is stored as a 96-bit (12-byte) fixed-point signed integer,
scaled by a variable power of 10. The power of 10 specifies the precision of the
digits to the right of the decimal point, and ranges from 0 to 28. This data type
should be used when calculations are required that cannot tolerate rounding
errors; for example, in financial applications.

If no decimal places are required, the Decimal data type can store up to positive
or negative 79,228,162,514,264,337,593,543,950,335.

Using the full 28 places for precision, the largest value that can be stored is
7.9228162514264337593543950335 and the smallest non-zero value is positive
or negative 0.0000000000000000000000000001.

Topic Objective
To describe the new data
types introduced in
Visual Basic .NET.

Lead-in
Three new data types
are available in
Visual Basic .NET: Char,
Short , and Decimal.

Delivery Tip
The changes to Short and
the other Integer data types
are covered in more detail
on the next slide.

Point out that Decimal is a
fixed-point type integer as
opposed to Double and
Single, which are floating
point. Therefore, Decimal is
more accurate for precise
calculations.

6 Module 3: Language and Syntax Enhancements

Changes to Existing Data Types

No longer stored as a DoubleDate

Not supported: use DecimalCurrency

Not supportedString (fixed length)

Not supported: use ObjectVariant

Long (64 bits, signed) (none)

IntegerLong (32 bits, signed)

ShortInteger

Visual Basic .NETVisual Basic 6.0

Several data types from Visual Basic 6.0 have changed or are no longer
supported in Visual Basic .NET. These changes make data types in
Visual Basic .NET more consistent with data types used by other programming
languages in the .NET Framework and in the runtime.

Integer
The Integer and Long data types in Visual Basic 6.0 have a different meaning
in Visual Basic .NET, as described in the following table.

Integer size

Visual Basic 6.0
data type

Visual Basic .NET
data type

.NET Framework
and runtime type

16 bits, signed Integer Short System.Int16

32 bits, signed Long Integer System.Int32

64 bits, signed (None) Long System.Int64

Variant
Visual Basic .NET updates the universal data type to Object for compatibility
with the common language runtime.

Visual Basic 6.0
You can assign to the Variant data type any primitive type (except fixed-length
strings) and Empty, Error, Nothing, and Null.

Visual Basic .NET
The Variant type is not supported, but the Object data type supplies its
functionality. Object can be assigned to primitive data types, Nothing, and as a
pointer to an object.

Topic Objective
To describe the changes to
existing data types in
Visual Basic .NET.

Lead-in
Several data types from
Visual Basic 6.0 have
changed or are no longer
supported.

 Module 3: Language and Syntax Enhancements 7

Currency
The Currency data type is not supported in Visual Basic .NET. You can use
the Decimal data type as a replacement. The Decimal data type uses 12 bytes
of memory, and allows more digits on both sides of the decimal point.

Date
The Date data type is available in Visual Basic .NET but is not stored in the
same format as it was in Visual Basic 6.0.

Visual Basic 6.0
The Date data type is stored in a Double format.

Visual Basic .NET
Date variables are stored internally as 64-bit integer. Because of this change,
there is no implicit conversion between Date and Double as there is in previous
versions of Visual Basic. Representing dates as integers simplifies and speeds
up the manipulation of dates.

String
Fixed-length strings are no longer supported, but you can simulate this behavior
by padding a string to the desired length with spaces, as shown in the following
example:

'Create a string containing spaces
Dim s As String = Space(10)

The type name String is an alias for the System.String class. Therefore, String
and System.String can be used interchangeably. The String class represents a
string of characters that cannot be modified after the text has been created.
Methods that appear to modify a string value actually return a new instance of
the string containing the modification.

This can impact performance in applications performing a large number of
repeated modifications to a string, so the System.Text.StringBuilder object is
provided. This object allows you to modify a string without creating a new
object, and is therefore a better choice if you are performing a large number of
string manipulations. The following example shows how to create a
StringBuilder variable and how to append values to it:

Dim s As New system.Text.StringBuilder()
s.Append("This")
s.Append(" is")
s.Append(" my")
s.Append(" text!")
MsgBox(s.ToString) 'generates "This is my text!"

Visual Basic 6.0 provides many string manipulation methods that are still
available in Visual Basic .NET. The System.String class also has many
predefined properties and methods that simulate this behavior by using an
object-oriented approach. These properties and methods include Insert, Length,
Copy , Concat, Replace, Trim, ToLower, and ToUpper. For more
information, search for “string methods” in the Visual Studio .NET
documentation.

Delivery Tip
Point out the StringBuilder
class and the example
shown in the notes.

8 Module 3: Language and Syntax Enhancements

Using CType to Convert Data Types

n Use CType to Convert Values from One Data Type to
Another Data Type

n Similar to CStr and CInt in Visual Basic 6.0

n Syntax:

l CType (expression, typename)

You can use the CType function to convert any value from one data type to
another data type. If the value is outside the range allowed by the type, an error
will occur. The CType function is similar to the CStr and CInt conversion
functions in Visual Basic 6.0, but it can be used for composite data type
conversion in addition to elementary types.

Syntax
Use the following syntax to convert data types:

CType(expression, typename)

n expression

The expression argument can be any valid expression, such as a variable, a
result of a function, or a constant value.

n typename

The typename argument can be any expression that is valid within an As
clause in a Dim statement, such as the name of any data type, object,
structure, class, or interface.

Example
The following examples show how to convert a String value to an Integer, and
how to convert to a data structure type:

Dim x As String, y As Integer
x = "34"
y = CType(x, Integer)

Dim custNew as Customer 'Predefined structure type
custNew = CType(data, Customer)

Topic Objective:
To explain how to use the
new CType function.

Lead-in:
In Visual Basic .NET, you
can convert any data type to
any other data type by using
the CType function.

 Module 3: Language and Syntax Enhancements 9

u Using Variables

n Declaring and Initializing Variables and Arrays

n Declaring Multiple Variables

n Variable Scope

n Creating Data Structures

n Compiler Options

n Assignment Operators

After you complete this lesson, you will be able to:

n Declare and initialize variables.

n Explain changes to variable scope in Visual Basic .NET.

n Create data structures.

n Use compiler options effectively.

n Use a new shorthand syntax for assignment operators.

Topic Objective
To explain how to declare,
initialize, and use
variables and arrays in
Visual Basic .NET.

Lead-in
This lesson explains the
differences between
declaring, initializing, and
using variables in
Visual Basic 6.0 and
Visual Basic .NET.

10 Module 3: Language and Syntax Enhancements

Declaring and Initializing Variables and Arrays

n You Can Initialize Variables When You Declare Them

n You Can Initialize Arrays with a Size, But They Are No
Longer Fixed

l You must dimension arrays in declaration before ReDim

Dim i As Integer = 21
Dim dToday As Date = Today()

'Array declarations
Dim Month(12) As Integer 'Creates array with 13 elements
'Initialize the array with 12 elements
Dim aMonth() As Integer = {1,2,3,4,5,6,7,8,9,10,11,12}

Dim i As Integer = 21
Dim dToday As Date = Today()

'Array declarations
Dim Month(12) As Integer 'Creates array with 13 elements
'Initialize the array with 12 elements
Dim aMonth() As Integer = {1,2,3,4,5,6,7,8,9,10,11,12}

In Visual Basic .NET, you can use a different process to declare some types of
variables, including arrays and strings. For example, you can declare and
initialize variables in a single statement.

Declaring and Initializing Variables
In Visual Basic .NET, you can initialize a variable when you declare it by using
the following syntax:

Dim [WithEvents] varname[([subscripts])] [As [New] type]
[= initexpr]

Most of this syntax is familiar to Visual Basic developers. However, there is a
new optional initexpr argument that allows you to assign an initial value to a
variable as long as the argument is not used in conjunction with the New
keyword.

Examples
The following code shows how to declare and initialize variables in a single
statement:

Dim i As Integer = 21
Dim dToday As Date = Today()
Dim dblFloat As Double = 1232.23312
Dim dBirthday As Date = #1/1/1995#
Dim iCalculate As Integer = i * 5

Topic Objective
To explain how variables
and arrays can be declared
and initialized.

Lead-in
How do you declare
variables and arrays in
Visual Basic .NET?

For Your Information
Object declaration and
initialization are covered in
Module 5, “Object-Oriented
Programming in
Visual Basic .NET,” in
Course 2373A,
Programming with Microsoft
Visual Basic .NET
(Prerelease).

Delivery Tip
Explain the examples on the
slide.

 Module 3: Language and Syntax Enhancements 11

Declaring and Initializing Arrays
You use a slightly different syntax to declare and initialize arrays. This syntax
allows you to specify not only the size of the array but also the initial values for
it.

In Visual Basic .NET, all arrays must have a lower bound value of zero. You
cannot declare an array by using the lower bound To upper bound syntax as
you do in Visual Basic 6.0. In the following example, the Month variable is
created with 13 elements, as it is in previous versions of Visual Basic. The
aMonth variable, however, creates and initializes an array of precisely 12
elements.

Dim Month(12) As Integer
Dim aMonth() As Integer = {1,2,3,4,5,6,7,8,9,10,11,12}

Redimensioning Arrays
In Visual Basic 6.0, you can only redimension an array if it is not dimensioned
when it is declared. In Visual Basic .NET, you can redimension an array if it is
dimensioned when it is declared.

Visual Basic 6.0
The following code shows how to redimension an array in Visual Basic 6.0:

Dim x() As String
ReDim x(5) As String 'Correct in Visual Basic 6.0

Dim y(2) As String
ReDim y(5) As String 'Error in Visual Basic 6.0 because you
 'cannot redim a dimensioned array

Visual Basic .NET
The following code shows how to redimension an array in Visual Basic .NET:

Dim x() As String
ReDim x(5) 'Correct in Visual Basic .NET
Dim y(2) As String
ReDim Preserve y(5) 'Allowed in Visual Basic .NET

12 Module 3: Language and Syntax Enhancements

Declaring Multiple Variables

n Declaring Multiple Variables in Visual Basic 6.0

n Declaring Multiple Variables in Visual Basic .NET

Dim I, J, X As Integer
'Results in I and J As Variant, X As Integer
Dim I, J, X As Integer
'Results in I and J As Variant, X As Integer

Dim I, J, X As Integer
'Results in I, J, and X As Integer
Dim I, J, X As Integer
'Results in I, J, and X As Integer

In Visual Basic 6.0, you can use a single line of code to declare multiple
variables, but you may get unexpected results. Consider the following example:

Dim I, J, X As Integer

Visual Basic 6.0
In Visual Basic 6.0, I and J are created as Variants, and X is created as an
Integer data type.

Visual Basic .NET
In Visual Basic .NET, all three variables are created as Integers . This is
consistent with how many other programming languages create multiple
variables and is more intuitive.

Topic Objective
To explain how to declare
multiple variables in a single
statement.

Lead-in
When you declare multiple
variables in one line of code,
Visual Basic .NET interprets
the code differently than
previous versions of
Visual Basic.

 Module 3: Language and Syntax Enhancements 13

Variable Scope

Dim iLooper As Integer 'Procedure level variable

For iLooper = 1 to 10
Dim iMax As Integer 'Block level variable
iMax = iLooper

Next
MsgBox (iMax) 'This line generates a compiler error

Dim iLooper As Integer 'Procedure level variable

For iLooper = 1 to 10
Dim iMax As Integer 'Block level variable
iMax = iLooper

Next
MsgBox (iMax) 'This line generates a compiler error

n Procedure Scope

l Variables accessible to entire procedure

n Block Scope

l Variables only accessible within that block

l Lifetime of block variable is entire procedure

In Visual Basic 6.0, if you declare variables inside a block of code, they are
accessible to the entire procedure that contains the block. This level of
accessibility is referred to as procedure scope. In Visual Basic .NET, variables
inside a block of code are only accessible to that block of code. This level of
accessibility is referred to as block scope.

Example
Consider an example in which you need procedure scope for your variables.

Visual Basic 6.0
The following code executes successfully in Visual Basic 6.0, because the iMax
variable has procedure scope. In Visual Basic .NET, the last line of code
generates a compile error because the iMax variable has block scope and is only
accessible in the For … Next loop.

Dim iLooper As Integer
For iLooper = 1 to 10
 Dim iMax As Integer
 iMax = iLooper
NextMsgBox (iMax)

'The last line generates a compiler error in Visual Basic .NET

Topic Objective
To explain the concept of
block scope and how it is
implemented in
Visual Basic .NET.

Lead-in
Visual Basic .NET
introduces a new level of
variable scope into the
Visual Basic language:
block scope.

Delivery Tip
Explain how the sample
code would work in Visual
Basic 6.0, and then explain
how it would work in
Visual Basic .NET.

14 Module 3: Language and Syntax Enhancements

Visual Basic .NET
If you rewrite the code as follows, it will execute successfully in
Visual Basic .NET.

Dim iLooper As Integer
Dim iMax As Integer
For iLooper = 1 to 10
 iMax = iLooper
NextMsgBox (iMax)

 Module 3: Language and Syntax Enhancements 15

Creating Data Structures

n Structures Replace User-Defined Types

n Structures Support Many Features of Classes

n Use Structure… End Structure to Declare Structures

n Declare Structure Members with an Access Modifier

Structure Customer
Public CustID As Integer
Dim CustDayPhone As String 'Defaults to public
Private CustNightPhone As String 'Private allowed

End Structure

Structure Customer
Public CustID As Integer
Dim CustDayPhone As String 'Defaults to public
Private CustNightPhone As String 'Private allowed

End Structure

In Visual Basic 6.0, you create user-defined types (UDTs) by using Type…
End Type syntax. In Visual Basic .NET, you create your own data types by
creating data structures. To create a data structure, you use the Structure…
End Structure syntax.

The members of UDTs can only contain Public data types. Internal members of
a data structure can contain Public, Friend, or Private data types. Therefore,
you must declare internal members of a structure w ith one of these access
modifiers, as shown in the following code:

Structure Customer
 Public CustID As Integer
 Dim CustDayPhone As String 'Defaults to public
 Private CustNightPhone As String 'Private allowed
End Structure

The syntax for using structures and classes in Visual Basic .NET is very similar.
In fact, structures support most features of classes, including methods.

For more information about data structures and access modifiers, see
Module 5, “Object-Oriented Programming in Visual Basic .NET,” in Course
2373A, Programming with Microsoft Visual Basic .NET (Prerelease).

Topic Objective
To explain how to create
your own data types by
using data structures.

Lead-in
Data structures replace
user-defined types in
Visual Basic .NET.

Delivery Tip
Point out that structures and
access modifiers will be
covered in more detail in
Module 5, “Object-Oriented
Programming in
Visual Basic .NET,” in
Course 2373A,
Programm ing with Microsoft
Visual Basic .NET
(Prerelease).

Note

16 Module 3: Language and Syntax Enhancements

Compiler Options

n Option Explicit

l Default option

n Option Strict

l Enforces strict type semantics and restricts implicit type
conversion

l Late binding by means of the Object data type is not
allowed

n Option Base 1 Not Supported

l Arrays must start at zero

The compiler options that you select affect many parts of your application. Two
options directly influence how your data types will behave and how you should
use them: Option Explicit and Option Strict. You set these options as On or
Off at the beginning of a module by using the following code:

Option Explicit On
Option Strict Off

Option Explicit
This option is on by default in Visual Basic .NET. When Option Explicit is
enabled, you must explicitly declare all variables before using them.
Undeclared variables generate a compiler error.

Without this option, you may accidentally create unwanted variables as a result
of spelling mistakes or other errors.

Option Strict
Option Strict is a new compiler option in Visual Basic .NET that controls
whether variable type conversions are implicit or explicit. This option prevents
the data inaccuracies that may result from implicit narrowing conversions.

If you select this option, implicit widening type conversion, such as converting
an Integer to a Long, is allowed. However, implicit narrowing type
conversions, such as converting a numeric String to an Integer, or a Long to
an Integer, cause a compiler error.

Topic Objective
To explain how setting
compiler options affects
data types.

Lead-in
Setting various compiler
options can alter the way
your data types behave.

Delivery Tip
Point out that if Option
Explicit is left off in previous
versions of Visual Basic,
spelling mistakes can create
variant variables instead of
causing a compiler error.

 Module 3: Language and Syntax Enhancements 17

The following example shows that assigning a Double value to an Integer
variable causes a compiler error with Option Strict enabled, because of
implicit narrowing. However, assigning an Integer value to a Long variable
will not cause an error because this is implicit widening.

Dim i As Integer, i1 As Double, lng As Long
i1 = 12.3122
i = i1 'Causes a compiler error
i = 256
lng = i 'No error because widening is acceptable

The following example shows a subroutine that takes an Integer argument but
is passed a String value, resulting in a compiler error:

Sub TestLong(ByRef lng As Long)
 ...
End Sub
TestLong("1234")
'Causes a compiler error because narrowing is unacceptable

Late binding is not allowed under Option Strict. This means that any variable
declared As Object can only use the methods provided by the Object class.
Any attempt to use methods or properties belonging to the data type stored in
the variable will result in a compiler error.

The following example shows what will happen if you use late binding when
Option Strict is enabled. A String value in an Object variable is allowed, but
calling a method from the String class is not allowed.

Dim x As Object
x = "MyStringData"

'Attempt to retrieve a character fails
MsgBox(x.Chars(4))

Option Base 1
In Visual Basic .NET, all arrays must start with a lower bound of 0. Therefore,
Option Base 0|1 is not a compiler option in Visual Basic .NET. This is
consistent with all programming languages using the .NET Framework.

18 Module 3: Language and Syntax Enhancements

Assignment Operators

n Simplified Variable Assignment Operators

n Example: iResult += 25

l iResult equals the existing value for iResult, plus 25

String concatenation& =
Subtraction- =
Addition+ =
Division/ =
Multiplication* =

Visual Basic .NET provides a shorthand syntax that you can use to assign
values to variables. The standard assignment operators are still valid; the new
syntax is optional.

Syntax
The original syntax and the shorthand version are shown below:

Original: {variable} = {variable} {operator} {expression}
Shorthand: {variable} {operator} = {expression}

For example:

Original: iResult = iResult + 25
Shorthand: iResult += 25

Topic Objective
To explain the new
assignment operators.

Lead-in
Visual Basic .NET supports
a simplified syntax for
assignment operations.

 Module 3: Language and Syntax Enhancements 19

Shorthand Operators
The following table shows how the compiler will interpret the new shorthand
operators.

Assignment
operator

Purpose

*= Multiplies the value of a variable by the value of an expression and

assigns the result to the variable.

/= Divides the value of a variable by the value of an expression and
assigns the result to the variable.

+= Adds the value of a variable to the value of an expression and assigns
the result to the variable. Can also be used for string concatenation.

-= Subtracts the value of a variable from the value of an expression and
assigns the result to the variable.

&= Concatenates a string variable with the value of an expression and
assigns the result to the variable.

^= Raises the value of a variable to the power of an exponent and
assigns the result to the variable.

\= Divides the value of a variable by the value of an expression and
assigns the integer result to the variable.

Example
The following example shows how to use the new assignment operators to
concatenate character strings and provides the resulting string:

Dim myString As String = "First part of string; "
myString &= "Second part of string"

MsgBox (myString)
'Displays "First part of string; Second part of string"

20 Module 3: Language and Syntax Enhancements

Demonstration: Using Variables and Data Structures

In this demonstration, you will learn how to declare and initialize different data
types, including some basic data types, arrays, and data structures. You will
also learn how to use block-scoped variables.

Topic Objective
To demonstrate how to
declare and initialize
variables and data
structures.

Lead-in
In this demonstration, you
will learn how to declare and
initialize variables, including
basic data types, arrays,
and data structures.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 3: Language and Syntax Enhancements 21

u Functions, Subroutines, and Properties

n Calling Functions and Subroutines

n Passing Arguments ByRef and ByVal

n Optional Arguments

n Static Function and Static Sub

n Returning Values from Functions

n Using Default Properties

After you complete this lesson, you will be able to work with functions,
subroutines, and default properties in Visual Basic .NET.

Topic Objective
To describe the changes
relating to using functions,
subroutines, and default
object properties.

Lead-in
The way you create and use
functions and subroutines
and the way you use default
object properties have
changed in
Visual Basic .NET.

Delivery Tip
This lesson covers creating
and using procedures, but it
only covers using default
object properties. For more
information about creating
properties, see Module 5,
“Object-Oriented
Programming in
Visual Basic .NET,” in
Course 2373A,
Programming with Microsoft
Visual Basic .NET
(Prerelease).

22 Module 3: Language and Syntax Enhancements

Calling Functions and Subroutines

n Visual Basic 6.0

l You must follow complex rules regarding use of
parentheses

l You must use parentheses when using a return value
from a function

n Visual Basic .NET

l You must use parentheses to enclose the parameters of
any function or subroutine

l You must include empty parentheses for procedures
without parameters

In Visual Basic .NET, the syntax that you use to call a procedure is different
from the syntax used in Visual Basic 6.0.

Visual Basic 6.0
When calling a procedure, you must follow a complex set of rules regarding the
use of parentheses. You must use them when you are using a return value from
a function. In other circumstances, use of parentheses will change the passing
mechanism being used.

Visual Basic .NET
You must use parentheses to enclose the parameters of any function or
subroutine. If you are calling a procedure without supplying any parameters,
you must include empty parentheses. The following statements show how to
call a subroutine that has parameters:

DisplayData(1, 21) 'Subroutine
Call DisplayData(1, 21)

Topic Objective
To explain the new syntax
for calling functions and
subroutines.

Lead-in
In Visual Basic .NET, the
rules for when to use
parentheses when calling
functions and subroutines
are much simpler than in
previous versions of
Visual Basic.

Delivery Tip
Point out that the
inconsistent requirements
for parentheses in previous
versions of Visual Basic are
often difficult for
inexperienced developers.

 Module 3: Language and Syntax Enhancements 23

Passing Arguments ByRef and ByVal

n Visual Basic 6.0

l ByRef is the default passing mechanism

n Visual Basic .NET

l ByVal is the default passing mechanism

When you define a procedure, you can choose to pass arguments to it either by
reference (ByRef) or by value (ByVal).

If you choose ByRef, Visual Basic passes the variable’s address in memory to
the procedure, and the procedure can modify the variable directly. When
execution returns to the calling procedure, the variable contains the modified
value.

If you choose ByVal, Visual Basic passes a copy of the variable to the
procedure. If the procedure modifies the copy, the original value of the variable
remains intact. When execution returns to the calling procedure, the variable
contains the same value that it had before it was passed.

There are some important differences between the Visual Basic 6.0 and
Visual Basic .NET mechanisms for passing parameters.

Visual Basic 6.0
• ByRef is the default passing mechanism.

Visual Basic .NET
• ByVal is the default passing mechanism, and is automatically added to

parameter definitions if you do not specify either ByVal or ByRef.

Topic Objective
To explain the default
mechanism for passing
arguments in
Visual Basic .NET.

Lead-in
There are some important
differences between the
Visual Basic 6.0 and
Visual Basic .NET
mechanisms for passing
parameters.

Delivery Tip
Check whether the students
understand the difference
between ByRef and ByVal.
If necessary, explain the
differences on a whiteboard
or flip chart.

24 Module 3: Language and Syntax Enhancements

Optional Arguments

n Visual Basic 6.0

l You do not need to specify default values for optional
parameters

l You can use the IsMissing function

n Visual Basic .NET

l You must include default values for optional parameters

l The IsMissing function is not supported

Function Add(Value1 As Integer, Value2 As Integer,
Optional Value3 As Integer = 0) As Integer
Function Add(Value1 As Integer, Value2 As Integer,
Optional Value3 As Integer = 0) As Integer

Optional arguments allow you to choose whether or not to pass all parameters
to a function or subroutine. There are some changes to how you use optional
arguments in Visual Basic .NET.

Visual Basic 6.0
n You do not need to specify default values for optional parameters.

n You can use the IsMissing function to verify that the parameters have been
passed to the procedure, if arguments are declared as Variant.

Visual Basic .NET
n You must include default values for optional parameters.

n The IsMissing function is not supported.

The following example shows how to declare an argument as optional in
Visual Basic .NET.

Function Add(Value1 As Integer, Value2 As Integer, Optional
Value3 As Integer = 0) As Integer

You can use overloaded functions to provide the same functionality as
optional arguments. For more information about overloading, see Module 5,
“Object-Oriented Programming in Visual Basic .NET,” in Course 2373A,
Programming with Microsoft Visual Basic .NET (Prerelease) .

Topic Objective
To explain changes in how
you use optional arguments.

Lead-in
There are some changes to
how you use optional
arguments in
Visual Basic .NET.

Note

 Module 3: Language and Syntax Enhancements 25

Static Function and Static Sub

n Visual Basic 6.0

l You can place Static in front of any Function or Sub
procedure heading

l Local variables in a static function or static subroutine
retain their values between multiple calls

n Visual Basic .NET

l Static functions and static subroutines are not supported

l You must explicitly declare all static variables

Static variables are declared differently in Visual Basic .NET.

Visual Basic 6.0
n You can place Static before any Sub or Function procedure heading. This

makes all the local variables in the procedure static, regardless of whether
they are declared with Static, Dim, or Private , or are declared implicitly.

n Local variables in a static function or static subroutine retain their values
between multiple calls to the function or subroutine.

Visual Basic .NET
n Static functions and static subroutines are not supported.

n You must explicitly declare all static variables.

The following example shows how to use a static variable:

Dim iLooper As Integer
Static iMax As Integer
For iLooper = 1 To 10
iMax += 1
Next
MsgBox(iMax)

Topic Objective
To explain how to declare
static variables in
Visual Basic .NET.

Lead-in
Static variables must be
explicitly declared in
Visual Basic .NET.

Delivery Tip
Check whether students
understand static variables,
and provide an example of a
static counter variable if
required.

26 Module 3: Language and Syntax Enhancements

Returning Values from Functions

n Visual Basic 6.0

l Use the function name to return the value

n Visual Basic .NET

l You can use the function name

l You can also use the Return statement

Visual Basic .NET provides flexibility in how you can return values from
functions.

Visual Basic 6.0
Use the function name to return the value.

Visual Basic .NET
You can use the function name to return the value. The following example
shows how to use the function name to return the value:

Function GetData() As String
 ...
 GetData = "My data"
End Function

You can also use the Return statement to return the value. This avoids linking
the return of the function to the function name, allowing for easier renaming of
functions. The following example shows how to use the Return statement to
return the value:

Function GetData() As String
 ...
 Return "My data"
End Function

The Return statement exits the function immediately and returns the
value to the calling procedure.

Topic Objective
To explain how values are
returned from functions in
Visual Basic .NET.

Lead-in
Visual Basic .NET provides
flexibility in how you can
return values from functions.

Note

 Module 3: Language and Syntax Enhancements 27

Using Default Properties

n Visual Basic 6.0

l Supports default properties on most objects

l Use Set to determine whether assignment is referring to
the object or the default property

n Visual Basic .NET

l Supports default properties only for parameterized
properties

l Do not need to differentiate between object and default
property assignments

l Default properties are commonly used to index into
collections

Visual Basic 6.0

Visual Basic .NET updates default property support for simplification and
improved readability.

Visual Basic 6.0
n Default properties are supported on most objects. For example, the Text

property of a TextBox control is defined as the default property, meaning
you can call the property without having to specify the property name.

n To allow this feature, the Set keyword is provided to distinguish between
using the object itself for assignment and using the object’s default property
for assignment.

Visual Basic .NET
n You can only mark a property as default if it takes parameters.

n You specify a property as the default property by starting its declaration
with the Default keyword.

n Default properties are commonly used to index into collections, such as the
ADO Recordset’s Fields.Item collection.

Let is still a reserved word in Visual Basic .NET, even though it has no
syntactical use. This helps avoid confusion with its former meanings. Set is
used in Visual Basic .NET for property procedures that set the value of a
property.

Topic Objective
To explain how you can use
default properties in
Visual Basic .NET.

Lead-in
The syntax for calling the
default properties of an
object has been updated in
Visual Basic .NET.

Delivery Tip
The syntax for calling
properties other than the
default property has not
changed. It is only the
default properties that have
been altered.

Explain that Set is provided
in Visual Basic 6.0 to
determine whether code is
referring to the object or the
default property; therefore, it
has been removed in
Visual Basic .NET.

Also note that property
creation is covered in
Module 5, “Object-Oriented
Programming in
Visual Basic .NET,” in
Course 2373A,
Programming with Microsoft
Visual Basic .NET
(Prerelease).

Note

28 Module 3: Language and Syntax Enhancements

Using Default Properties (continued)

Dim rs As ADODB.Recordset, Lab1 As Label
'…initialization

rs.Fields.Item(1).Value = Lab1.Text 'Valid
rs.Fields(1).Value = Lab1.Text 'Valid

rs.Fields(1) = Lab1.Text 'Not valid
Lab1 = "Data Saved" 'Not valid

Dim rs As ADODB.Recordset, Lab1 As Label
'…initialization

rs.Fields.Item(1).Value = Lab1.Text 'Valid
rs.Fields(1).Value = Lab1.Text 'Valid

rs.Fields(1) = Lab1.Text 'Not valid
Lab1 = "Data Saved" 'Not valid

n You Can Call Default Properties Only If the Property
Takes Parameters

The following examples show valid and invalid syntax for using default
properties:

Dim rs As ADODB.Recordset, Lab1 As Label
'…initialization

rs.Fields.Item(1).Value = Lab1.Text
'Valid because no defaults used
rs.Fields(1).Value = Lab1.Text
'Valid because Item is parameterized

rs.Fields(1) = Lab1.Text
'Not valid because Value is not parameterized
Lab1 = "Data Saved"
'Not valid because Text is not parameterized

Topic Objective
To examine correct and
incorrect syntax for using
default properties.

Lead-in
Here are some examples
showing correct and
incorrect syntax for using
default properties.

Delivery Tip
Explain every step of the
example and ask why each
line is valid or invalid.

 Module 3: Language and Syntax Enhancements 29

Lab 3.1: Working with Variables and Procedures

Objectives
After completing this lab, you will be able to:

n Declare and initialize variables.

n Create and call functions and subroutines.

Prerequisites
Before working on this lab, you must be familiar with using variables, arrays,
and procedures.

Scenario
In this lab, you will create a simple application that is based on Microsoft
Windows® in which you can enter customer information into an array and then
retrieve it. The application will consist of a single form that you use to input
this information.

Solution Files
There are solution files associated with this lab. The solution files are in the
install folder\Labs\Lab031\Solution folder.

Estimated time to complete this lab: 45 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will declare
and initialize variables, and
create subroutines and
functions.

Explain the lab objectives.

30 Module 3: Language and Syntax Enhancements

Exercise 1
Creating the Customer Form

In this exercise, you will create the customer entry form.

å To create a new project

1. Open Visual Studio .NET.

2. On the File menu, point to New, and then click Project.

3. In the Project Types box, click the Visual Basic Projects folder.

4. In the Templates box, click Windows Application.

5. Save the project as Lab031 in the install folder\Labs\Lab031 folder, and
then click OK.

å To create the customer form
1. In Solution Explorer, open the design window for Form1.vb.

2. In the Properties window, set the Text property of the form to Customer.

3. Add controls to the form, as shown in the following screen shot:

 Module 3: Language and Syntax Enhancements 31

4. Set the properties of the controls as shown in the following table.

Control Property name Property value

Label1 Text

Name

First Name:

lblFirstName

Label2 Text

Name

Last Name:

lblLastName

Label3 Text

Name

Date of Birth:

lblDOB

TextBox1 Text

Name

<empty>

txtFirstName

TextBox2 Text

Name

<empty>

txtLastName

TextBox3 Text

Name

<empty>

txtDOB

Button1 Text

Name

Add Customer

btnAddCustomer

Button2 Text

Name

Retrieve

btnRetrieve

5. Save the project.

32 Module 3: Language and Syntax Enhancements

Exercise 2
Adding a Customer

In this exercise, you will write code to add a new customer to an array of
customers when the user clicks Add Customer.

å To create the module-level variables

1. Create a private structure called Customer after the Inherits
System.Windows.Forms.Form statement within the Public Class code
block by using the information in the following table.

cCustomer member Data type

Id Integer

FirstName String

LastName String

DateOfBirth Date

2. Declare a private array called aCustomers to hold Customer elements with
an initial size of one.

å To add a customer

1. Create the btnAddCustomer_Click event handler.

2. In the btnAddCustomer_Click event handler, create a local variable named
cCustomer based on the information in the following table.

Variable name Data type

cCustomer Customer

3. Assign the upper bound limit of the aCustomers array to the Id member of
the cCustomer object.

4. Assign the Text properties of the text boxes to the corresponding members
of the cCustomer variable as defined in the following table.

Use the CDate function to convert the text property of txtDOB to the Date
data type for use by the cCustomer.DateOfBirth member.

cCustomer member Text box

FirstName txtFirstName

LastName txtLastName

DateOfBirth txtDOB

5. Using the UBound function for the array index, add the cCustomer variable
to the aCustomers array.

 Module 3: Language and Syntax Enhancements 33

6. Use the ReDim Preserve syntax and the UBound function to increase the
size of the aCustomers array by one.

This creates one more array element than is required. However, this is
acceptable for this exercise.

When you use the UBound function to increase the size of the
array, you must add the integer value of 1 to the result of the UBound
function.

7. Use the MsgBox function to display a message box that confirms that the
customer has been added.

8. Clear the txtFirstName, txtLastName, and txtDOB text boxes.

9. Save the project.

å To test your application

1. On the first line of the btnAddCustomer_Click event handler, set a
breakpoint.

2. On the Debug menu, click Start.

3. Enter customer details into the text boxes.

4. To add a customer, click Add Customer.

5. To step through the code, on the Debug menu, click Step Into.

6. To open the Locals window, on the Debug menu, point to Windows, and
click Locals. View the values of the variables as you step through the code.

Important

34 Module 3: Language and Syntax Enhancements

Exercise 3
Retrieving a Customer

In this exercise, you will write code to retrieve a customer from an array when
the user clicks Retrieve .

å To create the RetrieveCustomer function

1. At the end of the form definition, add a new private function named
RetrieveCustomer.

This function takes one argument by value, as defined in the following table.
It returns a Customer structure.

Argument name Data type

iIndex Integer

2. Return the Customer object stored in the iIndex position of the
aCustomers array as the result of the function.

å To call the RetrieveCustomer function

1. In the btnRetrieve_Click event handler, declare three local variables as
defined in the following table.

Variable name Data type

aCustomer Customer

sInput String

sMessage String

2. Use the InputBox function to ask the user to enter a customer identification
number, and then store the response in the sInput variable.

3. Use an If statement and the IsNumeric function to test whether the entered
data is numeric.

4. If the data is numeric, call the RetrieveCustomer function, and then pass it
the value of the sInput variable converted to an integer.

5. Store the return value of the RetrieveCustomer function in the aCustomer
variable.

6. To create a message to be displayed to the user, concatenate the values of
each of the aCustomer elements into the sMessage variable, and then
display the string in a message box.

7. Save the project.

 Module 3: Language and Syntax Enhancements 35

å To test your application

1. On the Debug menu, click Clear All Breakpoints.

2. On the first line of the btnRetrieve_Click event handler, set a breakpoint.

3. Start the application, and then add three customers of your choice.

4. To step through the code, click Retrieve.

5. In the InputBox, type 1 and then confirm that the correct customer
information is displayed.

You should see details for the second customer that you entered.
6. Quit the application.

7. On the Debug menu, click Clear All Breakpoints, and then save your
project.

8. Quit Visual Studio .NET.

36 Module 3: Language and Syntax Enhancements

u Exception Handling

n Structured Exception Handling

n Try… Catch… Finally

n Using Try… Catch… Finally

n The System.Exception Class

n Filtering Exceptions

n Throwing Exceptions

In this lesson, you will learn about the extensions to error handling (or
exception handling) in Visual Basic .NET. After completing this lesson, you
will be able to:

n Explain the advantages of the new exception handling system by comparing
unstructured handling to structured handling.

n Use the Try… Catch…Finally statement in conjunction with the
System.Exception class to implement structured exception handling.

n Create your own exceptions by using the Throw statement.

Topic Objective
To explain the extensions to
exception handling in
Visual Basic. NET.

Lead-in
Exception handling is an
important topic in any
application.
Visual Basic .NET
introduces a powerful new
form of handling: structured
exception handling.

 Module 3: Language and Syntax Enh ancements 37

Structured Exception Handling

n Disadvantages of Unstructured Error Handling

l Code is difficult to read, debug, and maintain

l Easy to overlook errors

n Advantages of Structured Exception Handling

l Supported by multiple languages

l Allows you to create protected blocks of code

l Allows filtering of exceptions similar to Select Case
statement

l Allows nested handling

l Code is easier to read, debug, and maintain

Visual Basic developers are familiar with unstructured exception handling in
the form of the On Error statement. With On Error, developers can check for
and handle exceptions in several different ways by using exception labels,
GoTo statements, and Resume statements.

Disadvantages of Unstructured Exception Handling
Unstructured exception handling can make your code difficult to read, maintain,
and debug, and may lead you to unintentionally ignore an error. For example,
when you use the On Error Resume Next statement, you must remember to
check the Err object after each action that can cause an error. If you do not
check the value after each action, you may miss an initial error when a
subsequent action also fails. This means you may handle an error incorrectly or
unintentionally ignore an error.

The Visual Basic language has been criticized because it lacks structured
exception handling. Visual Basic .NET addresses this criticism by supporting
structured exception handling, using the syntax Try… Catch…Finally.

Topic Objective
To introduce structured
exception handling and its
advantages.

Lead-in
Structured exception
handling is new to
Visual Basic .NET and
offers many advantages
over unstructured exception
handling.

Delivery Tip
Point out that you can still
use On Error syntax, but
that structured handling will
be a better choice, as will be
discussed in subsequent
topics.

38 Module 3: Language and Syntax Enhancements

Advantages of Structured Exception Handling
Structured exception handling is used in many programming languages, such as
Microsoft Visual C++® and Microsoft Visual C#™ , and combines protected
blocks of code with a control structure (similar to a Select Case statement) to
filter exceptions. Structured exception handling allows you to protect certain
areas of code. Any exceptions in code that you leave unprotected are raised to
the calling procedure, as in Visual Basic 6.0.

You can filter exceptions by using the Catch block, which provides
functionality similar to a Select Case statement in Visual Basic 6.0. This allows
you to filter multiple exceptions in the same way that a Select Case can handle
outcomes from a comparison.

You can also nest exception handlers within other handlers as needed (in the
same procedure or in a calling procedure), and variables declared within each
block will have block-level scope.

It is easier to create and maintain programs with structured exception handling.
The flow of execution is easy to follow and does not require jumps to non-
sequential code.

The old style of error handling is still supported in Visual Basic. NET. The only
restriction is that you can’t mix both styles of error handling in the same
procedure.

Delivery Tip
You will look at the
Try… Catch… Finally syntax
in detail on the following
slides.

Provide an example of when
you may want to nest an
exception handler within the
Catch block of another
handler. This might happen
when an exception has
occurred and you need to
test some code that may
create another exception.

 Module 3: Language and Syntax Enhancements 39

Try… Catch… Finally

...
Try
' Include code to be tried here
' Can use Exit Try to exit block and resume after End Try

Catch
' Define exception type and action to be taken
' Can use series of statements (multiple error handling)

Finally
' Optional block
' Define actions that need to take place

End Try
...

...
Try
' Include code to be tried here
' Can use Exit Try to exit block and resume after End Try

Catch
' Define exception type and action to be taken
' Can use series of statements (multiple error handling)

Finally
' Optional block
' Define actions that need to take place

End Try
...

You can implement structured exception handling in Visual Basic .NET by
using the Try…Catch…Finally statement.

Syntax
The following code shows the structure of a simple Try…Catch…Finally
statement:

Try
' Include code to be tried here
' You can use Exit Try to exit the code and resume after End
Try
Catch
' Define the exception type and the action to be taken
' You can use a series of statements (multiple error handling)
Finally
' This block is optional
' Define actions that need to take place
End Try

Try Block
Note the following as you examine this code:

n The Try… End Try block surrounds an area of code that might contain an
error.

n Code placed in this block is considered protected.

n If an exception occurs, processing is transferred to the nested Catch blocks.

n You can use the Exit Try keyword to instantly exit the Try… End Try
block. Execution will resume immediately after the End Try statement.

Topic Objective
To explain the basics of the
Try… Catch… Finally
syntax.

Lead-in
So how do you use the
Try… Catch… Finally
syntax?

Delivery Tip
At this stage students might
not know anything about
class inheritance, so do not
attempt to explain too much
about how exceptions can
inherit from the
System.Exception class.
Simply point out that there
are multiple exception
classes that are based on
the main
System.Exception class.

40 Module 3: Language and Syntax Enhancements

Catch Block
If an exception occurs in the Try block, execution will continue at the
beginning of the nested Catch block. The Catch block is a series of statements
beginning with the keyword Catch followed by an exception type and an action
to be taken. The following are some guidelines for using the Catch block:

n You can choose to handle all exceptions in one Catch block. You can also
declare multiple Catch blocks to filter the exception and handle particular
errors, similar to how you might use Select Case in previous versions of
Visual Basic.

n You can filter using the different exception classes defined by the .NET
Framework and runtime, or by using your own exception classes.

n You can use a When statement to compare the exception to a particular
exception number.

n If you use filtering for the exceptions but do not handle the actual exception
that occurred, the exception is automatically raised up to the calling
procedure (or to the user if no calling procedure exists). However, by using
a Catch filter with the Exception class, you will catch all of the other
exceptions that you have not included in your filters. This is the equivalent
of a Case Else statement in a Select Case structure.

Finally Block
The Finally block is optional. If you include this block, it is executed after the
Try block if no errors occurred, or after the appropriate Catch block has been
processed.

n The Finally block is always executed.

n In this block, you can define actions that need to take place regardless of
whether an exception occurs. This may include actions such as closing files
or releasing objects.

n The Finally block is most often used to clean up operations when a method
fails.

 Module 3: Language and Syntax Enhancements 41

Using Try… Catch… Finally

Sub TrySimpleException
Dim i1, i2, iResult As Decimal
i1 = 22
i2 = 0
Try
iResult = i1 / i2 ' Cause divide-by-zero error
MsgBox (iResult) ' Will not execute

Catch eException As Exception ' Catch the exception
MsgBox (eException.Message) ' Show message to user

Finally
Beep

End Try
End Sub

Sub TrySimpleException
Dim i1, i2, iResult As Decimal
i1 = 22
i2 = 0
Try
iResult = i1 / i2 ' Cause divide-by-zero error
MsgBox (iResult) ' Will not execute

Catch eException As Exception ' Catch the exception
MsgBox (eException.Message) ' Show message to user

Finally
Beep

End Try
End Sub

The following example shows how to implement structured exception handling
in Visual Basic .NET by using the Try…Catch…Finally syntax:

Sub TrySimpleException
 Dim i1, i2, iResult As Decimal
 i1 = 22
 i2 = 0
 Try
 iResult = i1 / i2 ' Cause divide by zero exception
MsgBox (iResult) ' Will not execute

 Catch eException As Exception ' Catch the exception

 MsgBox (eException.Message) ' Show message to user
 Finally
 Beep
 End Try
End Sub

Topic Objective
To explain a simple example
of structured exception
handling.

Lead-in
Let’s look at a simple
example of
Try… Catch… Finally
syntax.

42 Module 3: Language and Syntax Enhancements

The compiler processes this code as follows:

1. Processing begins by attempting the code in the Try block.

2. The code creates a divide-by-zero exception.

3. Execution passes to the Catch block, where a variable eException of type
Exception class is declared. This variable will display information about the
exception to the user.

4. The Finally code is executed after all processing in the Catch block is
complete. The Finally code causes a beep to sound, signifying that
processing is complete.

Any variables declared in any of the three blocks are scoped as block-
level variables. They cannot be accessed from outside of the block.

Note

 Module 3: Language and Syntax Enhancements 43

The System.Exception Class

n Provides Information About the Exception

The appropriate Help file, URN, or URLHelpLink property

For nested exceptionsInnerException property

The name of the exception, the exception
message, the name of the inner exception,
and the stack

ToString method

Exception historyStackTrace property

The name of the application or object that
generated the exception

Source property

Why the exception was thrownMessage property

Information providedProperty or Method

The System.Exception class in Visual Basic .NET, similar to the Err object in
Visual Basic 6.0, provides information about a particular exception. When you
use this class in your Catch blocks, you can determine what the exception is,
where it is coming from, and whether there is any help available.

Some of the most useful properties and methods of the System.Exception class
are described in the following table.

Property or method Description

Message property Use the Message property to retrieve information about

why an exception was thrown. A generic message is
returned if the exception was created without a particular
message.

Source property Use the Source property to retrieve the name of the
application or object that generated the exception.

StackTrace property Use the StackTrace property to retrieve the stack trace of
the exception as a string.

InnerException property Use the InnerException property to navigate to multiple
nested exceptions. Nesting exceptions may be useful if a
more specific (or general) exception needs to be generated
while maintaining the information from the original
exception. If only the original exception is required, use
the GetBaseException method.

HelpLink property Use the HelpLink property to retrieve the appropriate
Help file, URN, or URL for the exception. (See the note
following this table.)

ToString method Use the ToString method to return the fully qualified
name of the exception, the exception message (if there is
one), the name of the inner exception, and the stack trace.

Topic Objective
To examine the various
properties and methods of
the System.Exception
class.

Lead-in
The System.Exception
class provides information
about an exception.

44 Module 3: Language and Syntax Enhancements

Uniform Resource Locators (URLs) and Uniform Resource Names
(URNs) are both examples of Uniform Resource Identifiers (URIs). A URN is a
unique identifier that is not necessarily (but can be) in the form of a URL. They
can be any combination of characters that is unique. Large organizations are
more likely than individuals to use URNs because the guarantee of uniqueness
is more difficult to achieve.

Note

 Module 3: Language and Syntax Enhancements 45

Filtering Exceptions

Dim x, y, z As Integer, bSucceeded As Boolean = True
Try

'Perform various operations on variables
...

Catch eException As DivideByZeroException
MsgBox("You have attempted to divide by zero.")
bSucceeded = False

Catch eException As OverflowException
MsgBox("You have encountered an overflow.")
bSucceeded = False

...
Catch When Err.Number = 11

MsgBox("Error occurred.")
bSucceeded = False

Finally
If bSucceeded Then

...
End If

End Try

Dim x, y, z As Integer, bSucceeded As Boolean = True
Try

'Perform various operations on variables
...

Catch eException As DivideByZeroException
MsgBox("You have attempted to divide by zero.")
bSucceeded = False

Catch eException As OverflowException
MsgBox("You have encountered an overflow.")
bSucceeded = False

...
Catch When Err.Number = 11

MsgBox("Error occurred.")
bSucceeded = False

Finally
If bSucceeded Then

...
End If

End Try

To learn more about structured exception handling in Visual Basic .NET,
consider a more advanced example. In this example, errors are filtered based on
the class of the exception.

Topic Objectiv e
To explain a more advanced
example of Try...Catch...
Finally syntax that filters
exceptions.

Lead-in
Let’s look at a more
advanced example of
Try...Catch...Finally syntax
that involves filtering.

Delivery Tip
This example is more
complex because it uses
filtering to catch different
exceptions.

Explain that
DivideByZeroException,
OverflowException, and
ConstraintException are
all examples of exception
classes that are based on
(inherit from) the
System.Exception class.

One of the Catch blocks
checks the exception
number by using a When
statement.

Also point out that the last
Catch block uses the
ToString method of the
exception class.

46 Module 3: Language and Syntax Enhancements

Example
The following example shows how to use filtering to handle several different
exceptions in one Try...Catch...Finally statement:

Sub TryComplexException()
 Dim x, y, z As Integer, bSucceeded As Boolean = True

 Try
 'Perform various operations on variables
 ...
 Catch eException As DivideByZeroException
 MsgBox("You have attempted to divide by zero!")
 bSucceeded = False
 Catch eException As OverflowException
 MsgBox("You have encountered an overflow.")
 bSucceeded = False
 Catch eException As ConstraintException
 MsgBox(eException.ToString)
 bSucceeded = False
 Catch When Err.Number = 11
 MsgBox("Error occurred")
 bSucceeded = False
 Finally
 If bSucceeded Then
 MsgBox("Success!")
 Else
 MsgBox("Failure")
 End If
 End Try
End Sub

As you examine this code, note the following:

n For demonstration purposes, a test is made against various exception classes
such as DividebyZeroException, OverflowException, and
ConstraintException. These classes are all derived from the
System.Exception class.

n One of the Catch blocks checks the exception number, Err.Number, by
using the When statement.

n The last Catch block uses the ToString method of the Exception class.

n Note that if the exception does not meet any of the filter expressions, it will
be passed up to the calling procedure. Using System.Exception as a Catch
type would catch other unexpected exceptions.

 Module 3: Language and Syntax Enhancements 47

Throwing Exceptions

n Use Throw Keyword Instead of Err.Raise

Try
If x = 0 Then

Throw New Exception("x equals zero")
Else

Throw New Exception("x does not equal zero")
End If

Catch eException As Exception
MsgBox("Error: " & eException.Message)

Finally
MsgBox("Executing finally block")

End Try

Try
If x = 0 Then

Throw New Exception("x equals zero")
Else

Throw New Exception("x does not equal zero")
End If

Catch eException As Exception
MsgBox("Error: " & eException.Message)

Finally
MsgBox("Executing finally block")

End Try

In Visual Basic 6.0, you can use the Raise method of the Err object to raise
your own exceptions. You can use this method to create a business logic error
or to propagate an error after previously trapping it.

Visual Basic .NET introduces the Throw statement, which allows you to create
your own exceptions. The Throw statement provides similar functionality to
the Err.Raise method.

Example
The following example shows how to throw an exception in Visual Basic .NET:

Try
 If x = 0 Then
 Throw New Exception("x equals zero")
 End If
Catch eException As Exception
 MsgBox("Error: " & eException.Message)

End Try

This example will throw an exception if the value of the variable x is zero. The
If statement creates a new Exception object and passes a string containing an
exception description to the object constructor. This means that the Catch block
can handle the exception as it would deal with a normal system exception.

If a Throw statement is not executed within a Try block, the exception will be
raised to the calling procedure.

For more information about object constructors, see Module 5, “Object-
Oriented Programming in Visual Basic .NET,” in Course 2373A, Programming
with Microsoft Visual Basic .NET (Prerelease).

Topic Objective
To explain how to throw
your own exceptions.

Lead-in
You can raise your own
exceptions by using the
Throw statement.

Delivery Tip
You can also create your
own exception classes that
inherit from the
System.Exception class.
For more information,
see Module 4, “Object-
Oriented Design for
Visual Basic .NET” and
Module 5, “Object-Oriented
Programming in Visual
Basic .NET,” in Course
2373A, Programming with
Microsoft Visual Basic .NET
(Prerelease).

Delivery Tip
This is an example of using
object constructors for the
Exception class. They will
be covered in Module 4,
“Object-Oriented Design for
Visual Basic .NET” and
Module 5, “Object-Oriented
Programming in
Visual Basic .NET,” in
Course 2373A,
Programming with Microsoft
Visual Basic .NET
(Prerelease).

Note

48 Module 3: Language and Syntax Enhancements

Demonstration: Structured Exception Handling

In this demonstration, you will learn how to use the Try… Catch…Finally
statement to implement structured exception handling. You will also learn how
to check values of the System.Exception class and how to throw your ow n
exceptions.

Topic Objective
To demonstrate how to use
structured exception
handling.

Lead-in
In this demonstration, you
will learn how to use
structured exception
handling in
Visual Basic .NET.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 3: Language and Syntax Enhancements 49

Lab 3.2: Implementing Structured Exception Handling

Objectives
After completing this lab, you will be able to:

n Create structured exception handling.

n Throw your own exceptions.

Prerequisites
Before working on this lab, you must:

n Complete Lab 3.1.

n Be familiar with using the Try… Catch…Finally statement for structured
exception handling.

Scenario
In this lab, you will add structured exception handling to the application that
you created in Lab 3.1.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab032\Starter folder, and the solution files are in the
install folder\Labs\Lab032\Solution folder.

Estimated time to complete this lab: 30 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will add
structured exception
handling to your procedures
from Lab 3.1.

Explain the lab objectives.

50 Module 3: Language and Syntax Enhancements

Exercise 1
Adding Exception Handling to Customer Retrieval

In this exercise, you will add structured exception handling to the
RetrieveCustomer function that you created in Lab 3.1.

å Open the previous project
1. Open Visual Studio .NET.

2. Open the project from Lab 3.1. If you did not complete Lab 3.1, use the
project in the install folder\Labs\Lab032\Starter folder.

å To add exception handling to the btnRetrieve_Click event handler

1. In the btnRetrieve_Click event handler, add a Try…Catch…Finally code
block around the code that calls the RetrieveCustomer function, excluding
the variable declarations.

2. Create a new procedure-level Boolean variable named bSuccess, and then
initialize it to the value of True on the same line.

3. In the Catch block, create a variable named eException of the data type
Exception.

This catches an exception when a user tries to access an array element that
does not exist.

4. In a message box inside the Catch block, display the Message property
from the eException variable, and then set the bSuccess variable to False.

5. In the Finally block, create an If statement to test the bSuccess variable for
a value of True.

6. Locate the code that concatenates the sMessage variable and the MsgBox
function, and then perform a cut-and-paste operation to place this code
inside the If block.

7. Save the project.

å To test your application

1. On the first line of the btnRetrieve_Click event handler, set a breakpoint.

2. Run the application, and add only one customer.

3. Click Retrieve .

When you enter break mode, step through the code.

4. When asked for the customer identification number, enter the value 20 in
the InputBox.

5. Confirm that this generates an exception in the RetrieveCustomer function
that is caught by the exception handling in the btnRetrieve_Click event
handler.

6. End the application.

 Module 3: Language and Syntax Enhancements 51

å To add exception handling to the RetrieveCustomer function

1. In the RetrieveCustomer function, add a Try…Catch…Finally code block
around the existing code.

2. In the Catch block, create a variable named eOutofRange of type
IndexOutOfRangeException.

This catc hes an exception when a user tries to access an array that does not
exist.

3. Add the following line to the Catch block:

Throw New Exception (“Invalid Customer Id”, eOutOfRange)

This throws a new exception that includes a specific message, while keeping
the original exception as an inner exception. The Try...Catch...Finally
block in the btnRetrieve_Click event handler catches this exception.

4. Delete the Finally block.

It serves no purpose in this procedure.

å To display the inner exception in the btnRetrieve_Click event handler

1. In the btnRetrieve_Click event handler, modify the Catch block to display
additional information about the exception, including the Message , the
ToString, and the GetBaseException.Message members of the eException
variable.

2. Save your project.

å To test your application

1. Start the application, and add only one customer.

2. Click Retrieve .

3. When asked for the Customer Id, enter the value 20 in the InputBox.

4. Confirm that this generates an exception in the RetrieveCustomer function
and that it is handled inside the function, but then is raised to the
btnRetrieve_Click event handler.

5. Close Visual Studio .NET.

52 Module 3: Language and Syntax Enhancements

Review

n Data Types

n Using Variables

n Functions, Subroutines, and Properties

n Exception Handling

1. Declare and initialize an array that contains the following strings: “one”,
“two”, “three”, “four”.

Dim myArray() As String = {"one", "two", "three", "four"}

2. What types of variables are created by the following declaration if Option
Strict is off?

Dim a, b As Integer, c

The variables a and b are created as Integers; c is created as an Object.

3. What is the value of c after the following code executes:

Dim c As Integer

c = 1

CheckValue(c)

...

Sub CheckValue(ByVal iValue As Integer)

 ...

 iValue = 13

End Sub

The variable c remains equal to 1 because the default passing
mechanism is by value.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

 Module 3: Language and Syntax Enhancements 53

4. Assuming you have an open Recordset called rs and a TextBox control
called txtData, which of the following statements will create a compiler or
run-time error with Option Strict off? Why?
a. txtData.Text = rs(0)

b. txtData.Text = rs.Fields.Item(0)

c. txtData.Text = rs.Fields(0).Value

Statement (a) will fail because rs(0) returns a Field object; the Fields
collection is the default property of the Recordset object. This cannot be
assigned to the Text property of the txtData TextBox because the data
types are not compatible.

Statement (b) will fail because Value is the default property of the Field
object, and it does not take a parameter. This causes the compiler to
attempt to assign the Field object to the txtData.Text property,
resulting in an error.

Statement (c) will succeed because Item is the default property of the
Fields object, and it does take a parameter.

5. What is the method or property of the System.Exception class that retrieves
the most information about an exception?

The ToString method provides the fully qualified class name, and the
error message (if available), the name of the inner exception, and the
stack trace of the exception.

THIS PAGE INTENTIONALLY LEFT BLANK

