

Contents

Overview 1

Designing Classes 2

Practice: Deriving Classes from Use Cases 10

Object-Oriented Programming Concepts 11

Advanced Object-Oriented Programming
Concepts 20

Using Microsoft Visio 25

Lab 4.1: Creating Class Diagrams from
Use Cases 33
Review 41

Module 4: Object-
Oriented Design for
Visual Basic .NET

This course is based on the prerelease version (Beta 2) of Microsoft® Visual Studio® .NET
Enterprise Edition. Content in the final release of the course may be different from the
content included in this prerelease version. All labs in the course are to be completed with
the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright , no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United Stat es and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 4: Object-Oriented Design for Visual Basic .NET iii

Instructor Notes

This module explains the basic concepts that students need to understand to
take advantage of the object-oriented enhancements to Microsoft®
Visual Basic ® .NET. It describes how to create use cases and class diagrams to
model the system. It focuses on the areas that Visual Basic developers may be
familiar with but need to understand fully so they can use encapsulation,
inheritance, interfaces, and polymorphism.

In the lab, students will use Microsoft Visio® to create diagrams for classes,
attributes, operations, and relationships based on given use case descriptions.

After completing this module, students will be able to:

n Describe the basics of object-oriented design.

n Explain the concepts of encapsulation, inheritance, interfaces, and
polymorphism.

n Create classes based on use cases.

n Model classes for use in Visual Basic .NET by using Visio.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_04.ppt

n Module 4, “Object-Oriented Design for Visual Basic .NET”

n Lab 4.1, “Creating Class Diagrams from Use Cases”

Preparation Tasks
To prepare for this module, you should:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstrations.

n Complete the practice.

n Complete the lab.

Presentation:
75 Minutes

Lab:
45 Minutes

iv Module 4: Object-Oriented Design for Visual Basic .NET

Practice: Deriving Classes from Use Cases
This section provides suggested solutions for the student practice detailed in the
module notes. These are only recommended solutions for the classes, attributes,
and operations, and may be slightly different from the solutions created by
some students. If this occurs, the students should be able to justify their position
appropriately. The suggested solution is not intended to provide a fully
completed class diagram; it is meant to be a basic, rough design of the classes.

n Customer class

Attributes Operations

E-Mail LogOn (E-mail, Password)

Password

Full Name

Date of Birth

Sex

Address

n Product class

Attributes Operations

Name RetrieveDetails(ID)

Image

Full Description

Manufacturer

Price

n Order Class

Attributes Operations

Product ID ConfirmOrder()

Quantity

Delivery Date

 Module 4: Object-Oriented Design for Visual Basic .NET v

Demonstrations
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Creating Use Case Diagrams
The illustration provides an example of the finished diagram.

å To create the Visio drawing

1. Open Visio. In the Category list, click Software. In the Template list, click
UML Model Diagram to create an empty drawing.

2. On the View menu, click Grid so that the grid lines are not displayed.

å To create the use case diagram

1. In the Shapes toolbox, click the UML Use Case tab, and then use the
shapes to create the following actors and use cases. Set the name for each
item by double-clicking the item and changing the Name property.

Type Name

System Boundary

Actor Web User

Sales Agent

Credit Card Agency

Database

Use Case Web Log On

Place Order

Process Payment

2. Arrange the items so that only the use cases are displayed within the system
boundary.

vi Module 4: Object-Oriented Design for Visual Basic .NET

3. Use the tools in the Shapes toolbox to create associations between the
following items.

Shape Link from Link to

Communicates Web User actor Web Log On use case

Communicates Web User actor Place Order use case

Communicates Sales Agent actor Place Order use case

Communicates Web Log On use case Database actor

Communicates Place Order use case Database actor

Uses Place Order use case Process Payment use case

Communicates Process Payment use case Credit Card Agency actor

4. Select all of the associations, right-click any of the selected associations,
and then click Shape Display Options. Clear all of the End Options check
boxes, select Apply to the same selected UML shapes in the current
drawing window page, and click OK. This will remove the association
multiplicities and end names from the diagram.

5. Double-click the Web User actor, and then type the following description
into the Documentation box:
“A Web user customer who can place orders over the Internet.”

6. Double-click the Web Log On use case, and then type the following
description into the Documentation box:
“A customer logs on to the system using an e-mail address and password.
The e-mail address and pas sword are then validated by the database. If they
are not valid, an error message is displayed to the customer. If they are valid,
a welcome screen is displayed.”

7. On the File menu, click Save , and then go to the install folder\DemoCode\
Mod04\Use Cases folder. Rename the file UseCase.vsd, click Save, and
then click OK.

Creating Class Diagrams
The following illustration provides an example of the finished diagram.

 Module 4: Object-Oriented Design for Visual Basic .NET vii

å To create the UML classes

1. Open Visio, and then open the drawing you saved from the use case
demonstration.

2. In Model Explorer, right-click Top Package, point to New, and then click
Static Structure Diagram.

3. In the Shapes toolbox, click the UML Static Structure tab, and then use
the Class tool to create the following classes:

• Customer

• Credit Card Account

• Order

• Order Item

å To create the associations

1. In the Shapes toolbox, click the Binary Association tool to create an
association from the Customer class to the Order class. Point out that the
multiplicity end will be determined by the order in which you create the
association. Double-click the association, and in the UML Association
Properties dialog box, set the following values.

Association ends Multiplicity value

First item in list 1

Second item in list 0..*

2. Create an association from the Customer class to the Credit Card Account
class. In the UML Association Properties dialog box, set the following
values.

Association ends Multiplicity value

First item in list 1

Second item in list 0..*

3. Use the Composition tool to create an aggregation between the Order and
Order Item classes. In the UML Association Properties dialog box, set
the following values.

Association ends Multiplicity value

First item in list 1

Second item in list 1..*

4. Explain that this multiplicity setting is appropriate because an Order must
contain at least one Order Item to be valid.

5. Click the Customer-Credit Card Account association, hold down the
SHIFT key, and click the Customer-Order association. Right-click any of
the selected associations, and then click Shape Display Options. Clear the
First end name and Second end name check boxes, select Apply to the
same selected UML shapes in the current drawing window page, and
then click OK.

6. Repeat this process for the composition association.

viii Module 4: Object-Oriented Design for Visual Basic .NET

å To modify the Customer class

1. Double-click the Customer class, and in the UML Class Properties dialog
box, type the following description into the Documentation box:
“The Customer class stores information about a particular customer and
allows logging on to the system.”

2. In the Categories list, click Attributes , and then click the first line in the
list of attributes. Use this list to add the following attributes and set the
following properties.

Attribute Type Visibility

CustomerID VB::Integer private

Email VB::String public

Password VB::String public

3. In the Categories list, click Operations, and then click the first line in the
list of operations. Use this list to add an operation called LogOn, specifying
a return type as VB::Boolean . Click the Properties button to get to the
Documentation box, and then type the following text:
“The LogOn method validates an e-mail address and a password for a
customer. If the validation is successful, the attributes of the Customer
object will be retrieved from the database. The method returns a success or
failure Boolean flag.”

4. In the Categories list in the UML Operation Properties dialog box, click
Parameters . Create new parameters based on the following values.

Parameter Type Kind

Email VB::String In

Password VB::String In

5. Point out that there is much more that could be done to complete this class
diagram.

6. On the File menu, click Save As , and go to the install folder\DemoCode\
Mod04\Class Diagrams folder. Rename the file ClassDiagrams.vsd, click
Save, click OK, and then quit Visio.

 Module 4: Object-Oriented Design for Visual Basic .NET ix

Module Strategy
Use the following strategy to present this module:

n Designing Classes

This lesson introduces the concept of use cases and how they can be used to
model a system. It also shows how classes, attributes, and operations can be
derived from these use cases.

It should be noted that many of the examples used throughout the module
are open to different interpretations. Instructors should be able to discuss
various interpretations from students.

n Object-Oriented Programming Concepts

This lesson introduces the basic concepts of object-oriented design,
including encapsulation, association, aggregation, and class diagrams.

Some of the topics covered may be relatively basic for some students;
however, these areas are essential for those new to class design. Cover this
lesson quickly if the student knowledge level is appropriate.

n Advanced Object-Oriented Programming Concepts

This lesson covers more advanced object-oriented concepts, such as
inheritance (or generalization), interfaces, and polymorphism.

Some students may already be familiar with these advanced topics, but these
topics are essential for using Visual Basic .NET to its full capability, so this
lesson should not be rushed.

n Using Microsoft Visio

This lesson shows how Visio can help you model a system, particularly with
use cases and class diagrams.

Students who have used other tools such as Visual Modeler will find some
familiar features, but they will also find Visio to be a more powerful tool.
The module focuses on the creation of use case diagrams and class diagrams
(also known as static structure diagrams), but there are many other areas of
interest that you can discuss if time permits.

Note that code generation and reverse engineering are supported in this
version of Visio, but that neither are demonstrated.

 Module 4: Object-Oriented Design for Visual Basic .NET 1

Overview

n Designing Classes

n Object-Oriented Programming Concepts

n Advanced Object-Oriented Programming Concepts

n Using Microsoft Visio

Developers using Microsoft® Visual Basic ® version 4.0 and later have had some
exposure to the benefits of an object-oriented approach to programming, but it
is only now that you can take full advantage of an object-oriented paradigm if
you so choose. To use these new capabilities, you must be familiar with object-
oriented programming concepts. This module explains the areas that you must
understand to create object-oriented solutions in Visual Basic .NET.

In this module, you will learn how to begin the class design process by using
use cases. You will then learn about some common object-oriented
programming concepts, including inheritance, interfaces, and polymorphism.
Finally, you will learn how to document your system design by using Microsoft
Visio® to build use cases and class diagrams.

After completing this module, you will be able to:

n Describe the basics of object-oriented design.

n Explain the concepts of encapsulation, inheritance, interfaces, and
polymorphism.

n Create classes based on use cases.

n Model classes for use in Visual Basic .NET by using Visio.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will
learn about object-oriented
design and how it can
help you to create your
Visual Basic .NET
applications.

Delivery Tip
This module does not cover
all aspects of object-
oriented programming. It
concentrates on areas
Visual Basic developers
need to know to apply
object-oriented design
techniques when building
applications.

Given this, you should refer
students to other reference
books on object-oriented
design.

2 Module 4: Object-Oriented Design for Visual Basic .NET

u Designing Classes

n Use Case Diagrams

n Use Case Diagram Example

n Use Case Descriptions

n Extending Use Cases

n Converting Use Cases into Classes

You can use the Unified Modeling Language (UML) to help you analyze
requirements by graphically showing interactions within the system.

After completing this lesson, you will be able to:

n Design classes for use in applications created in Visual Basic .NET.

n Begin the process of designing classes by using use cases.

n Derive classes based on an existing use case.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
This lesson discusses use
cases and how they can be
used to begin the class
design process.

 Module 4: Object-Oriented Design for Visual Basic .NET 3

Use Case Diagrams

n Use Cases

l Provide a functional description of major processes

l Use a non-technical language to describe the process

l Show a boundary around the problem to be solved

n Actors

l Graphically describe who or what will use the processes

A use case is a collection of possible sequences of interactions in a system. Use
case diagrams are an integral part of designing a modern software application.
You can use the Unified Modeling Language (UML) to help you analyze
requirements by graphically showing interactions within the system. Use case
diagrams consist of individual use cases and actors.

What Are Use Cases?
You can employ use cases to:

n Provide a functional description of major processes.

Use cases usually represent common interactions between a user and a
computer system. A use case describes a process that is needed in order for
a system to fulfill its requirements.

n Use a non-technical language to describe the process.

Each individual use case will describe a particular process in a non-technical
language that can be understood by the intended application user.

The use case description should concentrate on the sequence of events and
decisions that must be made in the process rather than on an overly detailed
look at how things will be implemented.

n Show a boundary around the problem to be solved.

This boundary helps the designers and developers to concentrate on
individual processes without getting lost in the detail of the communications
between actors and the processes at this stage.

Topic Objective
To examine use case
diagrams.

Lead-in
Use case diagrams are the
first step in designing
classes for your solution.

4 Module 4: Object-Oriented Design for Visual Basic .NET

Creating Use Cases
When you create a use case, you will often focus on the people or actors who
will be using the system. If you are working with an existing system, you will
typically meet with users to discuss how they use the existing system to
complete their tasks. You might also observe intended users of your system to
record their processes. Each of these approaches leads to the creation of large
descriptions that you can then distill into smaller individual use cases.

Actors
An actor graphically represents who or what will use the system. An actor is
often a role that a person plays when interacting with a particular process of the
system. Actors request functionality of the system by way of a use case and can
use many different use cases. Multiple actors can also use the same use case.

Four categories of actors include:

n Principal actors

People who use the main system functions.

n Secondary actors

People who perform administration or maintenance tasks.
n External hardware

Hardware peripheral devices that are part of the application domain and
must be used.

n Other systems

Other systems with which the system must interact.

Identifying actors can help you understand what the system should do and who
can use each section of the system. Actors provide a starting point for designing
security permissions for the different roles that interact with the system. An
actor can also represent another software application or even a hardware device
that interacts with the new system.

 Module 4: Object-Oriented Design for Visual Basic .NET 5

Use Case Diagram Example

Retrieve Customer
Orders

Add Customer

Remove Customer
Telesales

Agent

Database

Internet
Client

Sales System

A simple use case diagram is made up of one or more use cases, actors, and the
communications between them.

Use Case Example
The example on the slide shows a sales system use case diagram that represents
three different processes (or use cases) and the three actors that interact with
them.

The illustration shows the system boundary that encapsulates the use cases
within its walls. It also shows external parts of the system, such as a database,
as external to the system boundary, or outside the walls.

Each actor communicates with one or more of the use cases. These actors help
to establish the roles in the system and where security boundaries will need to
be set later in lifetime of the application. In the example, you can see that two
of the actors are people and that one is a database that is considered another part
of the system. The Internet Client actor will only interact with the Retrieve
Customer Orders use case, while the Telesales Agent will interact with all three
use cases.

Topic Objective
To examine an example of a
use case diagram.

Lead-in
A simple use case diagram
is made up of one or more
use cases, actors, and the
communications between
them.

Delivery Tip
Point out the different actors
and what they represent.
Note that the Database
actor is not a person but that
this is acceptable.

Also point out and briefly
describe each use case.
Don’t give precise details
about the use cases
because this is covered in
more detail later in this
module.

These use cases are not
identical to the cargo system
and are meant to be fairly
generic.

6 Module 4: Object-Oriented Design for Visual Basic .NET

Use Case Descriptions

n “Retrieve Customer Orders” Use Case Description

A user requests the orders for a customer by using a
particular customer ID. The ID is validated by the
database, and an error message is displayed if the
customer does not exist. If the ID matches a customer,
the customer’s name, address, and date of birth are
retrieved, in addition to any outstanding orders for the
customer. Details about each order are retrieved,
including the ID, the date, and the individual order
items that make up an order.

Use case descriptions provide information about a particular scenario. Here is
an example of a scenario from the use case diagram in the preceding topic .The
Retrieve Customer Orders use case description reads as follows:

“A user requests the orders for a customer by using a particular customer ID.
The ID is validated by the database, and an error message is displayed if the
customer does not exist. If the ID matches a customer, the customer’s name,
address, and date of birth are retrieved, in addition to any outstanding orders for
the customer. Details about each order are retrieved, including the ID, the date,
and the individual order items that make up an order.”

By working through this use case description, you can see that it starts with a
request from a user to perform a certain action. Some validation then takes
place, and an error message is displayed if appropriate. If the validation
succeeds, information about the cus tomer, the customer’s orders, and the order
items for an order are retrieved and displayed to the user.

Notice that the precise details of how information is retrieved and displayed are
not mentioned. The point of a use case description is simply to describe the
business process, not provide all information for the developer. From this use
case description, various classes can be derived that will become the first
version of the detailed design for the system solution.

Topic Objective
To examine a particular
example of a use case
description.

Lead-in
Use case descriptions
provide information about a
particular scenario. Here is
an example of one of those
scenarios from the previous
use case diagram.

Delivery Tip
Read through the use case
description slowly.

 Module 4: Object-Oriented Design for Visual Basic .NET 7

Extending Use Cases

n uses - Reuses an Existing Use Case

n extends - Enhances an Existing Use Case

Add Customer
Check Customer

Exists
<<uses>>

Remove Inactive
Customers Remove Customer

<<extends>>

Instead of developing a separate use case for every process, you can reuse use
cases. This is a less repetitive approach and can save you a lot of time.

Two keywords that you can use to extend use cases are as follows:

n uses

The uses keyword allows an existing use case to be reused by other use
cases. This means that if a use case needs to perform some sort of action
that has been created elsewhere, there is no need to duplicate the effort. The
slide shows how the Add Customer use case might use the Check Customer
Exists use case that has been defined for reuse. This means that the Check
Customer Exists use case can be called directly from an actor or reused from
other use cases.

n extends

The extends keyword allows a use case to describe a variation on normal
behavior in an existing use case. In other words, it allows a new use case to
perform a similar action to an existing use case, except that the new use case
builds on the existing one, performing a more complex action. The
illustration shows how the Remove Customer use case can be extended to
remove the inactive customers who have not placed orders within two
months.

Topic Objective
To explain how use cases
can be extended.

Lead-in
Use cases can be reused
and extended with two
keywords.

Delivery Tip
The uses syntax is
straightforward, but the
extends syntax is more
complex.

Point out that extends is
mainly used to give a more
precise description of a
general use case. It is
particularly useful if the
extending use case deals
with an unusual situation.

8 Module 4: Object-Oriented Design for Visual Basic .NET

Converting Use Cases into Classes

n Use Case Descriptions Provide the Basis for Initial Class
Design

l Nouns = classes or attributes

l Verbs = operations (methods)
Example: ValidateCustomer, RetrieveOrders,
RetrieveOrderItems

A user requests the orders for a customer by using a particular
customer ID. The ID is validated by the database, and an error
message is displayed if the customer does not exist. If the ID
matches a customer, the customer’s name, address, and date of
birth are retrieved, in addition to any outstanding orders for the
customer. Details about each order are retrieved, including the
ID, the date, and the individual order items that make up an
order.

You can create initial class designs by finding the nouns and verbs in use case
descriptions. You can begin to identify classes or attributes for classes by
finding the nouns in the use case description. You can begin to identify
processes that can become operations or methods in a class by finding the verbs
in the use case description.

Identifying Classes and Attributes
Using the Retrieve Customer Orders use case description as an example, you
can identify several nouns that may lead to classes or attributes of those classes.

“A user requests the orders for a customer by using a particular customer ID.
The ID is validated by the database, and an error message is displayed if the
customer does not exist. If the ID matches a customer, the customer’s name,
address, and date of birth are retrieved, in addition to any outstanding orders
for the customer. Details about each order are retrieved, including the ID, the
date, and the individual order items that make up an order.”

Topic Objective
To describe the process of
designing initial classes
based on a use case
description.

Lead-in
Use case descriptions can
be used to create initial
class designs.

Delivery Tip
Creating classes, attributes,
and operations based on
use case descriptions can
be a subjective process.
Make it clear to the students
that this is only a preliminary
draft of a class design.

 Module 4: Object-Oriented Design for Visual Basic .NET 9

Based on the use case description, you might conclude that the following
classes and attributes are possible.

Class Attributes

User <Unknown at this stage>

Customer CustomerID

 Name

 Address

 Date of Birth

 Orders

Order ID

 Date

 Order Items

Order Items <Unknown at this stage>

These are only possible classes and attributes based on the use case description,
and they may be removed or modified in later design stages.

Identifying Operations and Methods
The name of the use case— Retrieve Customer Orders— gives you an idea for
an initial operation or method that begins the business process. The operation
ValidateCustomer can be derived from the statement “the id is validated.” The
purpose of this operation is to check the validity of a customer ID. The verb
“Retrieve” can also be used to derive an operation called RetrieveOrders on the
Customer class.

Although there may not be any other specific verbs in this use case description
example, you can see how verbs can be used to produce method names.

Using use case descriptions for initial class design is a subjective process.
You may have identified classes, attributes, or operations that differ from those
that the example shows. This is not unusual because this is only a first stage in
the class design process, and the differences will often disappear with further
design. However, there is generally more than one correct answer.

Note

10 Module 4: Object-Oriented Design for Visual Basic .NET

Practice: Deriving Classes from Use Cases

In this practice, you will work in pairs to select classes and some attributes or
operations based on the following use case descriptions. When you have
finished, the instructor and class will discuss the results as a group.

Customer Log On Use Case Description
“A customer logs on to the system by using an e-mail address and password. If
the e-mail address or password is not valid, a message stating that information
was incorrectly entered is displayed to the customer. If the e-mail address and
password are valid, a welcome screen is displayed, showing the customer’s full
name, date of birth, gender, and address.”

Place Order Use Case Description
“The customer selects the product to add to the order by using a product name.
To confirm that the customer has selected the correct product, an image, a full
description, a manufacturer, and a price is displayed to the customer. The
customer must enter a quantity value for the order and press a confirmation
button to continue the order process. A delivery date for the order must also be
entered by the customer.”

Topic Objective
To practice deriving classes
and attributes from use
cases.

Lead-in
This practice allows you to
work in pairs to derive some
classes and attributes from
a use case description.

Delivery Tip
Students will work in pairs
and then discuss the
outcome as a group.
While there should not be
too many variations in the
answers, you should expect
different interpretations and
be able to explain why a
given student answer is
correct or incorrect.

Expected answers are given
in the Instructor Notes for
this module.

 Module 4: Object-Oriented Design for Visual Basic .NET 11

u Object-Oriented Programming Concepts

n Comparing Classes to Objects

n Encapsulation

n Abstraction

n Association

n Aggregation

n Attributes and Operations

This lesson introduces several important concepts of object-oriented design that
will improve the way you design your Visual Basic .NET solutions.

After completing this lesson, you will be able to:

n Distinguish between objects and classes.

n Describe encapsulation, association, and aggregation.

n Explain how properties and methods are used to define a class and the
different levels of scope that make them accessible or inaccessible.

n Explain how classes are represented in class diagrams along with their
relationships to each other.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
There are several object-
oriented programming
concepts that you must be
familiar with when
developing classes for
Visual Basic .NET.

12 Module 4: Object-Oriented Design for Visual Basic .NET

Comparing Classes to Objects

Class Object
n A class is a template

or blueprint that
defines an object’s
attributes and
operations and that is
created at design time

n An object is a running
instance of a class
that consumes
memory and has a
finite lifespan

123

245

12

2 4 5

The object-oriented terms class and object often create some confusion because
they can be easily misused by developers when describing a system.

Class
A class is an abstract data type containing data, a set of functions to access and
manipulate the data, and a set of access restrictions on the data and on the
functions.

You can think of a class as a template or a blueprint for an object. This
blueprint defines attributes for storing data and defines operations for
manipulating that data. A class also defines a set of restrictions to allow or deny
access to its attributes and operations.

A car is an example of a class. We know that a car has attributes, such as the
number of wheels, the color, the make, the model, and so on. We know that it
also has operations, including unlock door, open door, and start engine.

Object
Objects are instances of classes. A single blueprint or class can be used as a
basis for creating many individual and unique objects.

If you consider classes and objects in Visual Basic terms, a class is created at
design time and will exist forever, whereas an object is instantiated at run time
and will only exist as long as required during the application execution.

For example, an instance of a car would contain specific information for each
attribute, such as number or wheels equals four, color equals blue, and so on.

Objects exhibit three characteristics:

n Identity

n Behavior

n State

Topic Objective
To examine the differences
between a class and an
object.

Lead-in
Classes and objects are
closely related. We cannot
talk about an object without
regard to its class. However,
there are some important
differences between them.

Delivery Tip
It may be useful to discuss
the differences between
objects and classes with
another example that is
relevant to Visual Basic
developers.
A button is defined internally
in Visual Basic as being
rectangular, as having a
caption, and as having the
ability to be clicked. This is
an example of a class.

You can place as many
instances of a button on a
form as you want, and
changing the caption of one
doesn’t affect the others.
These are examples of
objects.

Likewise, clicking one
instance of a button does
not cause the others to be
clicked.

 Module 4: Object-Oriented Design for Visual Basic .NET 13

Identity
One object must be distinguishable from another object of the same class.
Without this characteristic, it would be impossible to tell the difference between
the two objects, and this would cause great difficulties for developers. This
difference could be a simple identifier such as a unique ID number assigned to
each object, or several of each object’s attributes could be different from those
of the other objects.

A particular car could be the same make, model, and color as another car, but
the registration numbers cannot be identical. This difference provides a way to
distinguish two otherwise identical cars.

Behavior
Objects exist to provide a specific behavior that is useful. If they did not exhibit
this characteristic, we w ould have no reason to use them.

The main behavior or purpose of a car is to transport people from one location
to another. If the car did not provide this behavior, it would not perform a
useful function.

State
State refers to the attributes or information that an object stores. These
attributes are often manipulated by an object’s operations. The object’s state
can change by direct manipulation of an attribute, or as the result of an
operation. A well-designed object often only allows access to its state by means
of operations because this limits incorrect setting of the data.

A car keeps track of how far it has traveled since it was created in the factory.
This data is stored internally and can be viewed by the driver. The only way to
alter this data is to drive the car, which is an operation that acts upon the
internal state.

14 Module 4: Object-Oriented Design for Visual Basic .NET

Encapsulation

n How an Object Performs Its Duties Is Hidden from the
Outside World, Simplifying Client Development

l Clients can call a method of an object without
understanding the inner workings or complexity

l Any changes made to the inner workings are hidden
from clients

Encapsulation is the process of hiding the details about how an object performs
its duties when asked to perform those duties by a client. This has some major
benefits for designing client applic ations:

n Client development is simplified because the clients can call a method or
attribute of an object without understanding the inner workings of the object.

n Any changes made to the inner workings of the object will be invisible to
the client.

n Because private information is hidden from the client, access is only
available by means of appropriate operations that ensure correct
modification of data.

Example
Driving a car is an example of encapsulation. You know that when you press
the accelerator the car will move faster. You do not need to know that the pedal
increases the amount of fuel being fed into the engine, producing more fuel
ignition and thereby speeding up the output to the axle, which in turn speeds up
the car’s wheels, which has the final effect of increasing your speed. You
simply need to know which pedal to press to have the desired effect.

Likewise, if the car manufacturer changes the amount of fuel being mixed with
oxygen to alter the combustion, or creates a drive-by-wire accelerator pedal,
you do not need to know in order to increase your speed. However, if the
manufacturer replaces the accelerator pedal with a sliding throttle device,
similar to what you would find in an aircraft, you may need to know about it!

Topic Objective
To explain the concept of
encapsulation.

Lead-in
Encapsulation is one of the
key concepts of object-
oriented design.

Delivery Tip
To continue with the
Visual Basic button
example, we do not know
how a button receives a
click event from Microsoft
Windows® , just that it does
and that we can use it.

 Module 4: Object-Oriented Design for Visual Basic .NET 15

Abstraction

n Abstraction Is Selective Ignorance

l Decide what is important and what is not

l Focus on and depend on what is important

l Ignore and do not depend on what is unimportant

l Use encapsulation to enforce an abstraction

Abstraction is the practice of focusing only on the essential aspects of an object.
It allows you to selectively ignore aspects that you deem unimportant to the
functionality provided by the object. A good abstraction only provides as many
operations and attributes as are required to get the job done. The more
operations and attributes provided, the more difficult to use the object becomes.
If an object is simple to use because it includes only the essential operations,
there is a greater possibility that it can be reused by other applications.

A good abstract design will also limit a client’s dependency on a particular
class. If a client is too dependent on the way an operation is performed by an
object, any modification to the internal aspects of that operation may impact the
client, requiring that additional work be completed. This is often known as the
principle of minimal dependency.

Topic Objective
To explain the concept of
abstraction.

Lead-in
Abstraction allows you to
concentrate on what is
important in your objects
and ignore what is not.

16 Module 4: Object-Oriented Design for Visual Basic .NET

Association

n A class depends on another class to perform some
functionality

n Roles are the direction of the association

n Multiplicity determines how many objects can
participate in a relationship

Customer Order
0..*

Association

Multiplicity

An association is a relationship between two classes. It represents a dependency,
in that one class needs another class to accomplish a specific function.

The slide shows an example of an association between a Customer class and an
Order class. In this relationship, it does not make sense to be able to create an
order that does not belong to a particular customer, so we would specify that the
Order class is dependent on the Customer class. The association shows this
relationship.

Roles
A role is the direction of an association between two classes. The illustrated
association between Customer and Order contains two inherent roles: one
from Customer to Order, and another from Order to Customer. Roles can be
explicitly named by using a label, or implied if not included on a diagram like
that of the class name.

Multiplicity
Multiplicity is used to define a numeric constraint on an assoc iation that
restricts how many objects exist within the relationship. If no multiplicity
values are specified, there is an implicit one-to-one relationship between the
classes.

Topic Objective
To use association to
examine relationships
between classes.

Lead-in
Classes rarely exist in
isolation and are often
dependent on other classes
for certain functions.
Association is one way to
link classes together.

 Module 4: Object-Oriented Design for Visual Basic .NET 17

In the illustration on the slide, a customer can place many orders. This
relationship is signified by the 0..* multiplicity range on the Order end. As no
multiplicity value is specified at the Customer end, an implicit value of one is
assumed, signifying that an order can only have one customer.

The following table lists the other possibilities for multiplicity.

Symbol Meaning

* Many (zero or more)

0..1 Optional (zero or one)

1..* One or more

2-3, 6 Specific possibilities

{constraint} Rules including well-known constraints like Order or Mandatory, or
other unique business rules specific to your solution.

18 Module 4: Object-Oriented Design for Visual Basic .NET

Aggregation

n A complex class containing other classes

n A “part-of” relationship

n Example:

l An Order Item class contains a Product class

l A Product class is a “part of” an Order Item class

Order Item Product

Aggregation

*

Aggregation represents a relationship where simple objects form parts of a
more complex whole object.

This type of relationship is often used when an object does not make any sense
in its own right, such as Order Item in the example on the slide. An Order
Item needs to exist as part of a more complex object, such as an Order. The
Order itself is only useful as a complete object that includes individual Order
Items . The Order Item class can be referred to as the part classifier and the
Order class as the aggregate classifier.

You can also specify the number of parts that make up the whole by using
multiplicity on an aggregation relationship. The slide shows that an Order can
be made up of one or more Order Items.

The words aggregation and composition are sometimes used as though they are
synonyms. In UML, composition has a more restrictive meaning than
aggregation:

n Aggregation

Use aggregation to specify a whole/part relationship in which the lifetimes
of the whole and the parts are not necessarily bound together, the parts can
be traded for new parts, and parts can be shared. Aggregation in this sense is
also known as aggregation by reference.

n Composition

Use composition to specify a whole/part relationship in which the lifetimes
of the whole and the parts are bound together, the parts cannot be traded for
new parts, and the parts cannot be shared. Composition is also known as
aggregation by value.

Topic Objective
To examine the concept of
aggregation.

Lead-in
Some classes are more
complex than others.
Aggregation describes a
complex class that is made
up from other simpler
classes.

Delivery Tip
This topic may cause some
discussion because the
formal definitions of
aggregation and
composition cause much
disagreement between UML
experts.

Do not go into too much
detail because the
differences are not
significant to
Visual Basic .NET
development. In addition, be
aware that leading UML
experts still debate the
definitions of association,
aggregation, and
composition.

 Module 4: Object-Oriented Design for Visual Basic .NET 19

Attributes and Operations

n Attributes are the data contained in a class

n Operations are the actions performed on that data

n Accessibility: Public (+), Private (-), Protected (#)

Customer
-CustomerID: Long
+Name: String
+DOB: Date

+AddCustomer()
+GetDetails(ID: Integer)
-CheckValid(): Boolean

Attributes

Save Operation – No parameters

Load Operation – Integer parameter
CheckValid Operation – Boolean return value

Classes are usually made up of data and actions performed on this data. These
are known as attributes and operations respectively, but developers also call
them properties and methods. These attributes and operations are also defined
with an accessibility setting.

Attributes
Attributes are the data members of the class. They can be of any data type,
including String, Decimal, or even another class. Each attribute will also have
an accessibility option specified, as shown in the following table. In
Visual Basic .NET, public attributes will be implemented as either class-level
variables or, more appropriately, as class properties that encapsulate internal
variables.

Operations
Operations are the actions performed on internal data within the class. They can
take parameters, return values, and have different accessibility options specified
in the same way that attributes can. In Visual Basic .NET, these are
implemented as either functions or subroutines.

Accessibility
Attributes and operations can be defined with one of the access modifiers in the
following table.

Value Meaning

Public (+) Accessible to the class itself and to any client of the class.

Protected (#) Only accessible to a child class when used for inheritance.
(Inheritance will be covered later in this module.)

Private (-) Only accessible by code within the class that defines the private
attribute or operation.

Topic Objective
To explain class attributes
and operations.

Lead-in
Classes usually contain data
and functions that act upon
this data. These are known
as attributes and operations.

20 Module 4: Ob ject-Oriented Design for Visual Basic .NET

u Advanced Object-Oriented Programming Concepts

n Inheritance

n Interfaces

n Polymorphism

This lesson introduces some advanced concepts of object-oriented design:
inheritance, interfaces, and polymorphism.

After completing this lesson, you will be able to:

n Explain inheritance.

n Define interfaces.

n Define polymorphism

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
There are some other
important concepts that you
must understand to take full
advantage of the object-
oriented capabilities of
Visual Basic .NET.

 Module 4: Object-Oriented Design for Visual Basic .NET 21

Inheritance

n Inheritance Specifies an “Is-a-Kind-of” Relationship

n Multiple classes share the same attributes and
operations, allowing efficient code reuse

n Examples:

l A customer “is a kind of” person

l An employee “is a kind of” person

Customer Employee

Person

base class

derived classes

Inheritance is the concept of reusing common attributes and operations from a
base class in a derived class. If the base class does not contain implementation
code and will never be instantiated as an object, it is known as an abstract class.

The example below shows an inheritance relationship between the Customer,
Employee, and Person classes. The Person superclass has attributes defined as
Name, Gender, and Date of Birth and contains the operations Create,
Remove, and Validate. These are all attributes and operations that could
equally be applied to a Customer or Employee subclass, providing a good deal
of reuse.

Specialization occurs when a subclass is created and includes attributes or
operations specific to that class.

Topic Objective
To explain the concept of
inheritance.

Lead-in
Inheritance is an important
concept for object-oriented
developers because it
allows great flexibility in
solution design.

Delivery Tip
Inheritance is a key
new feature of
Visual Basic .NET, so it may
be worthwhile to give as
many examples as required
for students to understand
the concept.

Other examples include the
following:
Animal— Dog and Cat.
Vehicle— Car and Boat.
Company — Vendor and
Supplier

Person
Name: String
Sex: String
DOB: Date
Create()
Remove()
Validate()

Person
Name: String
Sex: String
DOB: Date
Create()
Remove()
Validate()

Employee
EmpId: Integer
Dept: String
ManagerId: Integer
Pay()

Employee
EmpId: Integer
Dept: String
ManagerId: Integer
Pay()

Customer
CustID: Integer
CreditRating: Integer
LastContact: Date
AddOrder()

Customer
CustID: Integer
CreditRating: Integer
LastContact: Date
AddOrder()

22 Module 4: Object-Oriented Design for Visual Basic .NET

The Customer class has the extra attributes CustomerID, CreditRating, and
LastContacted in addition to the inherited ones from the Person superclass. It
also defines its own operation named AddOrder that is specific to the
Customer class. Having an operation called AddOrder would not make sense
for either the Person class or the Employee class.

The Employee class has the extra attributes EmployeeID, Department, and
Manager. It also defines a unique operation named Pay that would not be
required in either the Person superclass or the Customer subclass.

If a superclass is not an abstract class and contains some implementation code,
the subclass can inherit the code from the superclass or override it by providing
its own code. This reuse of code is known as implementation inheritance and is
the most powerful form of reuse.

Although implementation inheritance is very useful, it can lead to class
diagrams and code that are complex and difficult to read. You should ensure
that implementation inheritance is used appropriately and not overused.

Visual Basic 6.0 does not support implementation inheritance, but
Visual Basic .NET does. For more information, see Module 5, “Object-Oriented
Programming in Visual Basic .NET,” in Course 2373A, Programming with
Microsoft Visual Basic .NET (Prerelease).

Note

 Module 4: Object-Oriented Design for Visual Basic .NET 23

Interfaces

n Interfaces only define the method signatures

n Classes define the implementation of the code for the
Interface methods

n Interface inheritance means only the Interface is
inherited, not the implementation code

Person
{abstract}

Public Sub Create()
Public Sub Remove()

Employee
Public Sub Create()

‘implementation code
…

End Sub
…

Interfaces are similar to abstract classes. They define the method signatures
used by other classes but do not implement any code themselves.

Interface inheritance means that only the method signatures are inherited and
that any implementation code is not. You would need to create separate code in
the appropriate inherited method of each derived class to achieve any required
functionality. Reuse is therefore more limited in interface inheritance as
compared to implementation inheritance because you must write code in
multiple locations.

Topic Objective
To explain interfaces from
an object-oriented point of
view.

Lead-in
Interfaces are similar to
abstract classes in that they
contain no implementation
code.

Delivery Tip
Do not try to explain
interfaces from a COM point
of view. Concentrate on the
fact that an interface defines
only the method signatures
and not the implementation
code.

24 Module 4: Object-Oriented Design for Visual Basic .NET

Polymorphism

n The same operation behaves differently when applied to
objects based on different classes

n Often based on Interface inheritance

l Classes inherit from interface base class

l Each derived class implements its own version of code

l Clients can treat all objects as if they are instances of
the base class, without knowledge of the derived classes

Polymorphism is the ability to call the same method on multiple objects that
have been instantiated from different subclasses and generate differing behavior.
This is often achieved by using interface inheritance. If two subclasses inherit
the same interface, each of them will contain the same method signatures as the
superclass. Each one will implement the code in an individual way, allowing
different behavior to be created from the same method.

In the above example, the Customer and Employee classes have inherited from
the Person superclass. Each class implements its own version of the Create
method differently, but, because they both inherit the same interface, a client
could treat both classes the same.

Topic Objective
To explain the object-
oriented concept of
polymorphism.

Lead-in
Polymorphism is an object-
oriented concept that some
Visual Basic developers will
be familiar with.

Customer

Inherited Sub Create()
‘do specific customer
‘code
…

End Sub

Customer

Inherited Sub Create()
‘do specific customer
‘code
…

End Sub

Employee

Inherited Sub Create()
‘do specific employee
‘code
…

End Sub

Employee

Inherited Sub Create()
‘do specific employee
‘code
…

End Sub

 Module 4: Object-Oriented Design for Visual Basic .NET 25

u Using Microsoft Visio

n Visio Overview

n Use Case Diagrams

n Class Diagrams

n Creating Class Diagrams

This lesson introduces the Visual Studio .NET modeling tool: Visio.

After completing this lesson, you will be able to:

• Use Visio to help you design your system solution.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Visual Studio .NET includes
a built-in modeling tool:
Visio.

26 Module 4: Object-Oriented Design for Visual Basic .NET

Visio Overview

n Supports:

l Use case diagrams

l Class or static structure diagrams

l Activity diagrams

l Component diagrams

l Deployment diagrams

l Freeform modeling

Visio allows you to design and document your solution from the initial analysis
and design stages all the way to the final deployment of your enterprise system.

It supports many different models, including the following.

Use Case Diagrams
As you have seen previously in this module, use cases are created to document
the interactions that take place between the actors and the processes in the
system. Visio allows you to model these diagrams and document the use case
descriptions within these diagrams.

Class or Static Structure Diagrams
This UML diagram provides a view of some or all of the classes that make up
the system. It includes their attributes, their operations, and their relationships.
Visio supports all aspects of class diagrams, including attribute visibility,
association roles, and interfaces.

Activity Diagrams
This UML diagram provides a view of the system’s workflow between
activities in a process. They can be used to model the dynamic aspects of the
system, usually based on one or more use case descriptions. You can use initial
states, transitions, decisions, and final states to model this view.

Component Diagrams
This UML diagram allows you to model physical aspects of a system, such as
the source code, executables, files, and database tables. You can use interfaces,
components, packages, and dependencies to model this view.

Topic Objective
To give an overview of the
capabilities of Visio.

Lead-in
Visio provides many ways to
help design and document
your system.

Delivery Tip
Use cases and class
diagrams have already been
discussed, so briefly review
these models but
concentrate on the other
models.

 Module 4: Object-Oriented Design for Visual Basic .NET 27

Deployment Diagrams
This UML diagram gives a view of the physical nodes (computational devices)
on which the system executes. This type of diagram is especially useful when
the system will involve more than one computer, such as in an enterprise
solution. Nodes, component instances, and objects are the main shapes used in
this diagram.

Freeform Modeling
Visio allows you the flexibility to create freeform models that do not need to
adhere to the UML standards. This allows you to create a diagram that
incorporates common UML shapes such as classes and components in addition
to non-UML shapes such as COM and flowchart shapes. You have the option to
validate all or part of your model to see whether it conforms to UML semantics.

28 Module 4: Object-Oriented Design for Visual Basic .NET

Use Case Diagrams

Visio allows you to create fully featured use case diagrams that include:

n Actors.

n Use cases.

n Relationships, including association, dependency, and inheritance. These
relationships include attributes such as multiplicity, navigability, and
stereotype.

n Notes to help store additional information.

You can add descriptions to all of the objects listed above to fully document
your model. You can also add any non-UML shapes from the various stencil
tabs to create a freeform model.

Topic Objective
To point out the main
elements in a use case
diagram in Visio.

Lead-in
Let’s take a look at a use
case diagram inside Visio.

 Module 4: Object-Oriented Design for Visual Basic .NET 29

Demonstration: Creating Use Case Diagrams

In this demonstration, you will learn how to create a use case diagram in Visio.
Note that the use cases created in the demonstration do not represent a
completed model; this exercise is for demonstration purposes only.

Topic Objective
To demonstrate how to
create use case diagrams
by using Visio.

Lead-in
Creating use cases is one of
the initial design steps you
will take in Visio.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

30 Module 4: Object-Oriented Design for Visual Basic .NET

Class Diagrams

Customer

Order Order Item

Product

*
1..*

*

Class diagrams allow you to graphically put all of these relationships together
in a single place. With some refinement, class diagrams will help a designer or
developer model the system in enough detail to enable code to be generated and
development to begin.

The ability to interpret a class diagram is vital in modern software development.
The slide shows that a single Customer class is associated with between zero
and many Order classes. An Order class is made up of (or aggregated with)
Order Item classes. The multiplicity for this relationship shows that there must
be at least one Order Item for an Order to be valid, but that there can be an
unlimited number of Order Items on the Order. Finally, each Order Item is
associated with a single Product , but a Product can be associated with many
Order Items.

Class diagrams are also known as static structure diagrams in Visio and
in some other UML modeling tools.

Topic Objective
To examine an example of a
class diagram.

Lead-in
We can put all of these
relationships together to
form a class diagram.

Delivery Tip
Explain the different parts of
the class diagram, pointing
out that you could argue that
a customer does not exist
unless it has at least one
order.

The various relationships
may also provide discussion
because some could be
designed as composition,
aggregation, or association.

Such discussion should be
limited because the purpose
of the illustration is to
examine notation and the
overall look of a class
diagram.

Note

 Module 4: Object-Oriented Design for Visual Basic .NET 31

Creating Class Diagrams

Visio allows you to create extensive class diagrams that include the following
elements:

n Classes.

n Abstract classes or interfaces.

n Class attributes with accessibility (private, protected, and public), initial
value, and stereotype (data type).

n Class operations with accessibility and parameters (detailed in the following
text).

n Operation parameters with direction (in, out, inout, and return) and
stereotype (data type).

n Relationships between objects, including association, dependency,
aggregation, composition, and inheritance. These relationships include
attributes such as multiplicity, navigability, and stereotype.

n Notes to help stor e additional information.

You can add descriptions to all of the objects listed above to fully document
your model. You can also add any non-UML shapes from the various Toolbox
tabs to create a freeform model.

Topic Objective
To point out the main
elements of a class diagram
in Visio.

Lead-in
Let’s take a look at a class
diagram inside Visio.

32 Module 4: Object-Oriented Design for Visual Basic .NET

Demonstration: Creating Class Diagrams

In this demonstration, you will learn how to create a class diagram in Visio.
Note that the classes created in the demonstration do not represent a completed
model. This exercise is for demonstration purposes only.

Topic Objective
To demonstrate the creation
of class diagrams in Visio.

Lead-in
Class diagrams are
particularly helpful for
creating Visual Basic .NET
enterprise solutions.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 4: Object-Oriented Design for Visual Basic .NET 33

Lab 4.1: Creating Class Diagrams from Use Cases

Objectives
After completing this lab, you will be able to:

n Create classes bas ed on use cases.

n Use Visio to create class diagrams.

Prerequisites
Before working on this lab, you must have:

n Knowledge of use cases and class diagrams.

n Familiarity with modeling tools.

Scenario
The Cargo system will provide the basis for many of the remaining lab
exercises in this course. It is based on a simple Internet system for collecting
and delivering customer packages. Web customers can log on to the system and
create a delivery from one location to another. Customers can also contact the
company by means of a telephone sales operator who can process the order in a
similar fashion. More information about the system is detailed in the use case
diagram provided to you. However, while the labs are based on this scenario,
you will not create the completed system during this course.

In this lab, you will view the descriptions of existing use cases to help you
understand the system. You will then create classes based on those descriptions.

Estimated time to complete this lab: 45 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will look at
the use cases for the Cargo
system. You will then create
class diagrams in Visio for
those use case descriptions.

Explain the lab objectives.

34 Module 4: Object-Oriented Design for Visual Basic .NET

Exercise 1
Viewing the Cargo Use Case Diagram

In this exercise, you will investigate the use case diagram for the Cargo system,
the individual actors, and the use case descriptions.

å To open the CargoModeler drawing
1. Open Visio.

2. On the File menu, click Open. In the install folder\Labs\Lab041\Ex01
folder, click the CargoModeler.vsd drawing, and then click Open.

å To view the diagram documentation

1. Double-click each actor individually, and read the associated documentation
in the UML Actor Properties dialog box.

2. Double-click each use case individually, and read the associated
documentation in the UML Use Case Properties dialog box.

 Module 4: Object-Oriented Design for Visual Basic .NET 35

Exercise 2
Creating the Cargo Classes and Relationships

In this exercise, you will create the Cargo system’s classes and relationships,
based on the use case descriptions from the previous exercise.

å To create the Cargo classes

1. On the File menu, click Open. Browse for the install folder\Labs\
Lab041\Ex02\Starter folder, click the CargoModeler.vsd drawing, and then
click Open.

2. In Model Explorer, right-click Top Package, point to New, and then click
Static Structure Diagram. Rename the diagram Classes in the Model
Explorer.

3. In the Shapes toolbox, click the UML Static Structure tab. Click the Class
tool and drag it to the drawing. Double-click the new class to display the
properties, and rename the class Customer.

4. Repeat step 3 to create the following classes: Delivery, Package, Special
Package, Invoice, and Payment.

å To create the class relationships

1. Click the Binary Association tool, and drag it to create an association from
the Customer class to the Delivery class.

2. Double-click the new association to display the UML Association
Properties dialog box. In the Association Ends list, change the
Multiplicity value in the first line to 1. Change the Multiplicity value in the
second line to 0..*. (Note that the order of association ends is related to the
order in which you created the associations.)

3. Repeat steps 1 and 2 to create the following relationships and multiplicity
values.

From class To class Multiplicity value

Customer Invoice First line: 1

Second line: 0..*

Delivery Invoice First line: 1

Second line: 1

Invoice Payment First line: 1

Second line: 1

Delivery Package First line: 1

Second line: 1..*

4. Create a generalization relationship from the Special Package class to the
Package class by using the Generalization tool.

36 Module 4: Object-Oriented Design for Visual Basic .NET

å To hide the association end names

1. Select all the binary associations, right-click any of the selected associations,
and then click Shape Display Options. Clear the First end name and
Second end name check boxes, select Apply to the same selected UML
shapes in the current drawing window page, and click OK. This will
remove the end names from the diagram.

2. Save the drawing.

 Module 4: Object-Oriented Design for Visual Basic .NET 37

Exercise 3
Creating the Customer Class

In this exercise, you w ill create the Customer class attributes and operations.

å To create the Customer class attributes

1. If you have not completed the previous exercise, use the starter code found
in the install folder\Labs\Lab041\Ex03\Starter folder.

2. Double-click the Customer class to display the UML Class Properties
dialog box.

3. In the Attributes section, click the first line in the list of attributes. Use the
information in the following table to add the class attributes.

Attribute Type Visibility

CustomerID VB::Integer private

Email VB::String public

Password VB::String public

FirstName VB::String public

LastName VB::String public

Address VB::String public

Company VB::String public

å To create the LogOn operation

1. In the Operations section, click the first line in the list of operations. Add
an operation called LogOn with a return type of VB::Boolean.

2. Click Properties, and in the Documentation box, add the following
description:
“Attempts to log on a customer and retrieve his or her details based on
e-mail address and password.”

3. In the Parameters section, create new parameters based on the following
values.

Parameter Type Kind

Email VB::String in

Password VB::String in

4. Click OK to return to the UML Class Properties dialog box.

38 Module 4: Object-Oriented Design for Visual Basic .NET

å To create the AddCustomer operation

1. Create the AddCustomer operation with a return type of VB::Integer.

2. Click Properties, and in the Documentation box, add the following
description:
“Adds a new customer to the database based on the input parameters.”

3. In the Parameters section, create new parameters based on the following
values.

Parameter Type Kind

Email VB::String in

Password VB::String in

FirstName VB::String in

LastName VB::String in

Company VB::String in

Address VB::String in

4. Click OK to return to the UML Class Properties dialog box.

å To create the GetDetails operation

1. Create the GetDetails operation. Click Properties , and, in the
Documentation box, add the following description:
“Returns the customer details based on the CustomerId received.”

2. In the Parameters section, create new parameters based on the following
values.

Parameter Type Kind

CustomerID VB::Integer in

3. Click OK to return to the UML Class Properties dialog box, and then click
OK to return to the drawing.

 Module 4: Object-Oriented Design for Visual Basic .NET 39

å To generate Visual Basic .NET source code

1. On the UML menu, point to Code, and then click Generate.

2. Select Visual Basic as the Target Language. Select Add Classes to Visual
Studio Project, and then in the Template list, click Class Library.
Rename both the project and the solution as Cargo.

3. Click Browse, locate the install folder\Labs\Lab041\Ex03\Starter folder,
and then click OK.

4. Select the Customer class only for code generation, and click OK.

5. Save the drawing and quit Visio.

å To view the code

1. Open Visual Studio .NET.

2. On the File menu, point to Open, and then click Project. Set the folder
location to install folder\Labs\Lab041\Ex03\Starter, click Cargo.sln, and
then click Open.

3. View the code for Customer.vb.

4. Quit Visual Studio .NET.

40 Module 4: Object-Oriented Design for Visual Basic .NET

If Time Permits
Viewing the Cargo Design Solution

In this optional exercise, you will investigate the class diagram for the
completed Cargo system.

å To open the CargoModeler drawing
1. Open Visio.

2. On the File menu, click Open. Browse for the install folder\Labs\
Lab041\Ex04 folder, click the CargoModeler.vsd drawing, and then click
Open.

å To view the classes

• Investigate each attribute and operation, including the parameters, for each
class on the diagram.

 Module 4: Object-Oriented Design for Visual Basic .NET 41

Review

n Designing Classes

n Object-Oriented Programming Concepts

n Advanced Object-Oriented Programming Concepts

n Using Microsoft Visio

1. An actor must be a person that interacts with the system. True or false?

False. An actor can also be another system or a part of a system.

2. Define the object-oriented term encapsulation.

Encapsulation is the hiding of the details about how an object performs
various operations.

3. Define the object-oriented term inheritance.

Inheritance is the reuse of the methods and attributes of a general class
in more specialized classes.

4. Describe freeform modeling.

Freeform modeling is the ability to use UML and non-UML shapes in a
Visio diagram.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

42 Module 4: Object-Oriented Design for Visual Basic .NET

5. In the following use case description, what are the likely classes and
attributes?

A user requests a listing of grades from a school based on a particular
student ID. The ID is validated by the database, and an error message
appears if the student ID does not exist. If the ID matches a student, the
student’s name, address, and date of birth are retrieved, in addition to the
grades. The user is prompted to verify the information, and the grades are
displayed if the verification succeeds. An error message is displayed if the
user is unable to verify the information. Three verification attempts are
allowed before the user is automatically logged off. The user is
automatically logged off after five minutes of inactivity.

Class Attributes

User <Unknown at this stage>

Student StudentID

 Name

 Address

 Date of Birth

 Grades

Grades ID

