

Contents

Overview 1

Why Use Windows Forms? 2

Structure of Windows Forms 4

Using Windows Forms 12

Demonstration: Manipulating Windows
Forms 27

Using Controls 28

Demonstration: Implementing Drag-and-
Drop Functionality 42
Windows Forms Inheritance 43

Demonstration: Using Windows Forms
Inheritance 48

Lab 6.1: Creating the Customer Form 49
Review 57

Module 6: Using
Windows Forms

This course is based on the prerelease version (Beta 2) of Microsoft® Visual
Studio® .NET Enterprise Edition. Content in the final release of the course may be
different from the content included in this prerelease version. All labs in the course are to
be completed with the Beta 2 version of Visual Studio .NET Enterprise Edition.

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part
of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted
in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

© 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, BizTalk, FrontPage, IntelliSense, JScript,
Microsoft Press, Outlook, PowerPoint, Visio, Visual Basic, Visual C++, Visual C#, Visual
InterDev, Visual Studio, and Windows Media are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 6: Using Windows Forms iii

Instructor Notes

This module provides students with the knowledge needed to create Microsoft®
Windows®-based applications.

In the lab, students will continue working with the Cargo system. The
Customer class from Lab 5.1 has been enhanced for students, and a
CustomerList class has been provided to iterate through the customers. The
basic Customer form has been provided, but it requires further development.

After completing this module, students will be able to:

n Describe the benefits of Windows Forms.

n Use the new properties and methods of Windows Forms.

n Write event-handling code.

n Use the new controls and control enhancements.

n Add and edit menus.

n Create a form that inherits from another form.

Materials and Preparation
This section provides the materials and preparation tasks that you need to teach
this module.

Required Materials
To teach this module, you need the following materials:

n Microsoft PowerPoint® file 2373A_06.ppt

n Module 6, “Using Windows Forms”

n Lab 6.1, Creating the Customer Form

Preparation Tasks
To prepare for this module, you should:

n Read all of the materials for this module.

n Read the instructor notes and the margin notes for the module.

n Practice the demonstrations.

n Complete the practice.

n Complete the lab.

Presentation:
120 Minutes

Lab:
45 Minutes

iv Module 6: Using Windows Forms

Demonstrations
This section provides demonstration procedures that will not fit in the margin
notes or are not appropriate for the student notes.

Manipulating Windows Forms
å To examine the startup code

1. Open the FormsDemo.sln solution in the install folder\DemoCode\
Mod06\FormsDemo folder.

2. Open the Code Editor window for the modMain.vb file.

3. Examine the code in the Sub Main procedure.

å To test the application

1. Run the project.

2. Click the Center button on the form, and step through the code when
execution halts at the preset breakpoint.

3. Click the Auto Scroll button on the form, and step through the code when
execution halts at the preset breakpoint. When execution resumes, resize the
form vertically so that the scroll bars appear at the side of the form, and
show that all of the buttons are still accessible. Resize the form again back
to its original size.

4. Click the Change Font button on the form, and step through the code when
execution halts at the preset breakpoint. When execution resumes, point out
that the button fonts have changed automatically.

5. Click the Add Owned Form button on the form, and step through the code
when execution halts at the preset breakpoint. When execution resumes,
point out that the new form is owned, so that it is always displayed in front
of its owner and is minimized and closed along with the owner.

6. Click the Top Level button on the form, and step through the code when
execution halts at the preset breakpoint. When execution resumes, point out
that the new form is enclosed within the boundaries of the parent form.

7. Close the application and Microsoft Visual Studio® .NET.

Using Controls
å To examine the frmControls code

1. Open the ControlsDemo.sln solution in the install folder\DemoCode\
Mod06\ControlsDemo\Starter folder.

2. Open the design window for frmControls.vb. The purpose of the form is to
show the effects of the anchor and dock styles to a Button control. Point out
the Anchoring and Docking menus and their menu items. Also, point out
the FlatStyle property of the btnClose button in the Properties window.

3. View the code window for the frmControls.vb form.

4. View the Sub ProcessAnchorMenus procedure and examine the code,
pointing out that multiple menus are being handled by the one procedure.

5. View the Sub ApplyAnchoring procedure and examine the code.

6. View the Sub ApplyDocking procedure and examine the code.

 Module 6: Using Windows Forms v

å To test the frmControls form
1. Run the project.

2. Resize the form to show that the Close button does not move. This is
because the Top and Left menu items are checked by default. Resize the
form to its original size.

3. Use the Anchoring menu to demonstrate the following:

Checked Anchor menu items Purpose

No items checked Close button stays approximately in the middle

of the form.

Bottom and Right checked Close button stays close to the bottom and right
of the form.

Top, Left, Bottom, and Right
checked

Close button grows in direct relation to the
form.

4. Using the Docking menu, test each docking option, beginning with the Top
menu item and finishing with the Fill menu item. Show the effects these
settings have on the Close button.

5. Click the Close button to quit the application.

å To examine the frmDemo code

1. Open the design window of the frmDemo.vb form.

2. In the Properties window, view the Anchor properties for each control on
the form.

3. Open the code window for frmDemo.vb.

4. Locate the Sub New procedure and explain the following line:

Me.MinimumSize = Me.Size

å To test the frmDemo form

1. Run the project.

2. On the Other menu, click Display and resize the form to show how the
controls behave and how the MinimumSize property affects the form.

3. Close both forms to quit the application.

vi Module 6: Using Windows Forms

å To add ToolTip, Help, and NotifyIcon controls to frmControls

1. Open the design window for frmControls.vb, and add the following controls
to the form, setting the appropriate properties.

Control Property Value

HelpProvider Name hpHelp

NotifyIcon Name niTray

 Icon C:\Program Files \Microsoft Visual Studio.NET\
Common7\Graphics\icons\Elements\Cloud.ico
(or any available icon)

ToolTip Name ttToolTip

2. Open the code window for frmControls.vb.

3. Open the Sub New procedure, and uncomment and explain the lines of code
beginning with the following:

'Dim cmTrayMenu As ContextMenu, mItem As MenuItem

å To test the ToolTip, Help, and TrayIcon controls

1. Run the application.

2. Pause the mouse over the Close button control to view the ToolTip.

3. Press F1 to display the Help string.

4. Right-click the TrayIcon in the Windows System Tray, and then click Exit.

5. Close Visual Studio .NET.

Implementing Drag-and-Drop Functionality
å To examine the code

1. Open the DragDrop.sln solution in the install folder\DemoCode\
Mod06\DragDrop folder.

2. View the form design for Form1.vb. The purpose of the form is to drag an
item from the list box on the left to the list box on the right.

3. View the code window for the Form1.vb form.

4. Locate the lstListBoxFrom_MouseMove event handler, and explain each
line of code. Point out that the DoDragDrop method will wait until the drop
action has occurred before processing the remainder of the procedure.

5. Locate the lstListBoxTo_DragOver event handler, and explain each line of
code.

6. Locate the lstListBoxTo_DragDrop event handler, and explain the single
line of code.

 Module 6: Using Windows Forms vii

å To test the application

1. Run the project.

2. Click an item in the ListBoxFrom control. Hold down the left mouse button
to drag the item to the ListBoxTo control. Point out that the icon is
displayed as the Move operation when over the control. Release the item
over the control, and debug the code at the preset breakpoint to show the
removal of the item from ListBoxFrom.

3. Press F5 to allow execution to continue.

4. Repeat the drag process from the ListBoxFrom control to the ListBoxTo
control, but hold down the CTRL key while dragging the control. Point out
that the icon is now displayed as the Copy operation when over the
ListBoxTo control. Release the item over the list box and debug the code at
the preset breakpoint to show that the item is not removed from
ListBoxFrom.

5. Click the Close button on the form to close the debugging session.

6. Close the Visual Studio .NET integrated development environment (IDE).

Using Windows Forms Inheritance
å To view the base form

1. Open the Visual Inheritance.sln solution in the install folder\DemoCode\
Mod06\Visual Inheritance\Starter folder.

2. Open the design window for the frmBase.vb form, pointing out the different
controls that already exist.

å To test the base form application
1. Run the project.

2. Click the System Info button on the form and close the resulting message
box.

3. Click OK to close the application.

å To modify the base form

1. In the design window for the frmBase.vb form, set the Modifiers property
of the following control. All other controls should remain Assembly.

Control Modifiers value

lblProductName Public

2. Open the code window for frmBase.vb.

3. Locate the btnOK_Click event handler, and change the procedure
declaration to be as follows:

Protected Overridable Sub btnOk_Click(…)

4. On the Build menu, click Rebuild All.

viii Module 6: Using Windows Forms

å To create the inherited form

1. On the Project menu, click Add Inherited Form to create a new inherited
form. Rename the form frmInherited.vb and click Open. Select the
frmBase.vb form as the base form, and click OK.

2. Open the design window for the frmInherited.vb form and point out the
differences between the Public and Assembly controls by resizing the
lblProductName label and attempting to resize the btnSysInfo button (which
should not resize).

3. Open the code window for frmInherited.vb.

4. Locate the Sub New procedure, and add the following lines before the End
Sub:

Me.Text = "About My Application"
txtLicensedTo.Text = "Karen Berge"
lblProductName.Text = "My Wonderful Application"
btnSysInfo.Visible = False

5. Open the modMain.vb file and change the startup form to frmInherited.

Application.Run(New frmInherited())

å To test the application

• Run the project, and test the OK button that will close the application.

å To override the OK button

1. Open the code window for frmInherited.vb.

2. Click (Overrides) in the Class Name box at the top of the code window.
Select the btnOk_Click method from the Method Name box.

3. Add the following code to the event handler:

MessageBox.Show("Closing the inherited form.", "Close")
MyBase.btnOk_Click(sender, e)

å To test the overridden OK button

• Run the project and test the OK button, confirming that the message box is
displayed and the form is then closed, returning to the IDE.

 Module 6: Using Windows Forms ix

å To modify the base form

1. Open the design window for the frmBase.vb form.

2. From the Toolbox, add a Button control just beneath the btnSysInfo button,
setting the following properties of the new button.

Property Value

Name btnCall

Text “” (Empty string)

FlatStyle Popup

Image C:\Program Files\Microsoft Visual Studio.NET\Common7\
Graphics\icons \Comm\Phone01.ico

3. Double-click the new button to edit its btnCall_Click event handler, adding
the following line:

MessageBox.Show("Dialing help line.", "Help Line")

å To test the modified application

1. Run the project and confirm that the new button is automatically displayed
in the inherited form before exiting the application.

2. Close Visual Studio .NET.

x Module 6: Using Windows Forms

Module Strategy
Use the following strategy to present this module:

n Why Use Windows Forms?

This lesson shows some of the benefits of using Windows Forms rather than
Microsoft Visual Basic® forms. This lesson provides an overview because
some of these topics are addressed in more detail later in the module. GDI+,
printing support, accessibility, and the extensible object model are not
covered in any more detail in this module. Extensibility will be covered
when user controls are discussed in Module 9, “Developing Components in
Visual Basic .NET,” in Course 2373, Programming with Microsoft
Visual Basic .NET (Prerelease).

n Structure of Windows Forms

This lesson shows how to use the new Windows Forms object model to
create Windows-based applications. Emphasize the object model hierarchy
because it is this object-oriented approach that provides the power of
Windows Forms. Ensure that students are comfortable with the anatomy of
the form code because this may confuse or concern students whose
background is limited to Visual Basic.

The lesson also discusses various form properties, methods, and events, as
well as how to handle those events. Finally, dialog boxes are examined to
point out the subtle differences between Visual Basic .NET dialog boxes
and those of previous versions of the Visual Basic language.

n Using Controls

This lesson shows how to use some of the new and enhanced controls in a
Windows Form. Creating menus with the Menu Designer is not explicitly
covered, although you may want to quickly demonstrate the new designer if
students have not already used it. The lesson also examines some of the user
assistance controls and the new technique for drag-and-drop operations.

n Windows Form Inheritance

This lesson shows how to use visual inheritance through the Windows
Forms class library. If students are comfortable with the concept of class
inheritance, they will have no trouble extending that knowledge to visual
inheritance. The process for creating base forms and inherited forms is
examined, as are the effects that modification to a base form can have on
those that inherit from it.

 Module 6: Using Windows Forms 1

Overview

n Why Use Windows Forms?

n Structure of Windows Forms

n Using Windows Forms

n Using Controls

n Windows Forms Inheritance

This module describes the new Microsoft® Windows® Forms that are provided
by the Microsoft .NET Framework. Windows Forms are the Microsoft
Visual Basic ® .NET version 7.0 equivalent to Visual Basic forms.

You will learn about the new features available in Windows Forms and how to
make changes to forms and controls, and their properties, methods, and events.
You will also learn how to create some of the standard Windows dialog boxes.
Finally, you will learn about visual inheritance, which allows you to use object-
oriented techniques within your forms.

After completing this module, you will be able to:

n Describe the benefits of Windows Forms.

n Use the new properties and methods of Windows Forms.

n Write event-handling code.

n Use the new controls and control enhancements.

n Add and edit menus.

n Create a form that inherits from another form.

Topic Objective
To provide an overview of
the module topics and
objectives.

Lead-in
In this module, you will learn
about Visual Basic .NET
Windows Forms.

2 Module 6: Using Windows Forms

Why Use Windows Forms?

n Rich Set of Controls

n Flat Look Style

n Advanced Printing
Support

n Advanced Graphics
Support – GDI+

n Accessibility Support

n Visual Inheritance

n Extensible Object
Model

n Advanced Forms
Design

Windows Forms provide many enhancements over standard Visual Basic forms,
including:

n Rich set of controls

By using classes in the System.Windows.Forms namespace, you can create
Visual Basic .NET applications that take full advantage of the rich user
interface features available in the Microsoft Windows operating system.
This namespace provides the Form class and many other controls that can
be added to forms to create user interfaces. Many additional controls are
included that were previously only available through external libraries
(.ocx’s) or third-party products. Some existing controls now allow simple
access to properties and methods from the object model instead of requiring
complex application programming interfaces (APIs) to perform extended
functionality.

n Flat look style

Windows Forms allow you to create applications that use the new flat look
style as seen previously in Microsoft Money 2000.

n Advanced printing support

Windows Forms provide advanced printing support through the
PageSetupDialog, PrintPreviewControl, PrintPreviewDialog, and
PrintDialog controls.

Topic Objective
To explain some of the
benefits of Windows Forms.

Lead-in
Windows Forms provide
many enhancements over
previous versions of
Visual Basic forms.

 Module 6: Using Windows Forms 3

n Advanced graphics support— GDI+

The System.Drawing namespace provides access to GDI+ basic graphics
functionality. GDI+ provides the functionality for graphics in Windows
Forms that are accessible in the .NET Framework. More advanced
functionality is provided in the System.Drawing.Drawing2D,
System.Drawing.Imaging, and System.Drawing.Text namespaces.

You can take full advantage of these system classes to create applications
that provide the user with a richer graphical environment.

n Accessibility support

Windows Forms provide accessibility properties for controls so that you can
develop applications that people with disabilities can use.

n Visual inheritance

Windows Forms are classes and can benefit from inheritance. Windows
Forms can be inherited in derived forms that automatically inherit the
controls and code defined by the base form. This adds powerful reuse
possibilities to your applications.

n Extensible object model

The Windows Forms class library is extensible, so you can enhance existing
classes and controls with your own functionality.

You can also create your own designers, similar to the docking or anchoring
designers, that will work in the Microsoft Visual Studio ® .NET integrated
development environment (IDE).

n Advanced forms design

Developers have traditionally spent much time writing code to handle form
resizing, font changes, and scrolling. Windows Forms provide much of this
functionality with built- in properties for docking, anchoring, automatic
sizing, and automatic scrolling. These new features allow you to concentrate
on the functions of your applications.

Delivery Tip
GDI+ allows high-powered
graphics to be used in
Windows Forms– based
applications. This allows
developers to use any type
of graphics file within their
applications and to use
techniques such as alpha
blending, color gradients,
and anti-aliasing.

4 Module 6: Using Windows Forms

u Structure of Windows Forms

n Windows Forms Class Hierarchy

n Using the Windows.Forms.Application Class

n Examining the Code Behind Windows Forms

Windows Forms appear similar to Visual Basic 6.0 forms, but the structure of
the Windows Form code is different from previous Visual Basic forms. This is
because the Windows Forms library in the .NET Framework is object oriented.

After completing this lesson, you will be able to:

n Describe several of the classes in the Windows Forms class hierarchy.

n Use the Windows.Forms.Application class to manage your application at
run time.

n Interpret the code generated by Windows Forms.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Windows Forms at first
appear to be similar to
Visual Basic 6.0 forms, but
there are structural
differences.

 Module 6: Using Windows Forms 5

Windows Forms Class Hierarchy

Control

ContainerControl

Form

UserControl

ScrollableControl

The .NET Framework provides all of the classes that make up Windows
Forms–based applications through the System.Windows.Forms namespace.
The inheritance hierarchy provides many common features across the .NET
Windows Forms classes, providing a consistent set of properties and methods
for many controls and forms. Some of the classes are examined below.

Control
The Control class is the fundamental base class for other controls. It provides
the basic functionality for a control, such as sizing, visibility, and tab order.

ScrollableControl
The ScrollableControl class inherits directly from the Control class and
provides automatic scrolling capabilities for any control that requires scroll bars.

ContainerControl
The ContainerControl class inherits directly from the ScrollableControl class
and adds tabbing and focus management functionality for controls that can host
other controls.

Topic Objective
To explain some significant
classes in the Windows
Forms inheritance hierarchy.

Lead-in
The .NET Framework
provides many built-in
classes for Windows Forms
development.

Delivery Tip
This is not a definitive list of
classes, just the relevant
ones for this module.

6 Module 6: Using Windows Forms

Form
The Form class inherits directly from the ContainerControl class and
represents any window displayed in the application. The properties and
methods provided by the Form class allow you to display many different types
of forms, including dialog boxes and multiple-document interface (MDI) forms.
All Windows Forms are derived from this class because it provides the basic
functionality required by forms.

UserControl
The UserControl class also inherits directly from the ContainerControl class
and provides an empty control that you can use to create your own controls by
using the Windows Forms Designer.

For information about creating controls, see Module 9, “Developing
Components in Visual Basic .NET,” in Course 2373A, Programming with
Microsoft Visual Basic .NET (Prerelease).

Note

 Module 6: Using Windows Forms 7

Using the Windows.Forms.Application Class

n Starting and Ending Applications

n Using DoEvents

n Setting and Retrieving Application Information

Sub Main()
Dim frmFirst as New Form1()
frmFirst.Show() 'Displays the first form
Application.Run()

'Allows the application to continue after the form is closed
End Sub

Sub Main()
Dim frmFirst as New Form1()
frmFirst.Show() 'Displays the first form
Application.Run()

'Allows the application to continue after the form is closed
End Sub

Dim strAppPath As String
strAppPath = Application.StartupPath
'use this path to access other files installed there

Dim strAppPath As String
strAppPath = Application.StartupPath
'use this path to access other files installed there

You can use the Windows.Forms.Application class for managing your
application at run time, in a similar way to using the App object in
Visual Basic 6.0. You cannot instantiate this class in your code because a single
instance exists for the duration of your application at run time.

Starting and Ending Applications
The Application object provides methods that you use to start and end your
applications. Use the Run method to start an application and the Exit method to
terminate an application.

The Run method has an optional parameter that specifies the form to be
displayed. If you specify this parameter, the application will end when that form
is closed. To enable your application to continue running after the initial form
has closed, use the Show method of the form before calling the Run method of
the Application. When you use the Show method before calling the Run
method, you must use the Exit method to explicitly end your application.
Calling this does not run the Close event on your forms, but simply ends the
application.

Topic Objective
To explain the purpose of
the Windows.Forms.
Application class.

Lead-in
The Windows.Forms.
Application class manages
the application at run time.

8 Module 6: Using Windows Forms

The following example shows how to use the Application class to start your
application, keep it running after the first form is closed, and end the
application. You must remember to change the Startup Object property of the
project to Sub Main for this to work.

Sub Main()
 Dim frmFirst as New Form1()
 frmFirst.Show() ' Displays the first form
 Application.Run()
' Allows the application to continue after the form is closed
End Sub

Private Sub LastForm_Closing (ByVal sender As Object, ByVal e
As System.ComponentModel.CancelEventArgs) Handles
MyBase.Closing
 ' Any cleanup code for the application
 Application.Exit
End Sub

Using DoEvents
The Application class also provides the DoEvents method. This method is
similar to the DoEvents function in Visual Basic 6.0, but it is now implemented
as a method of the Application object.

You use this method to allow other messages in the message queue to be
processed during the handling of a single event in your code. By default, when
your form handles an event, it processes all code in that event handler and will
not respond to other events that may be occurring. If you call the DoEvents
method in that code, your application will have a chance to handle these other
events, such as the repainting of a form that has had another w indow dragged
over it. You will typically use this method within loops to ensure that other
messages are processed.

When you use the DoEvents method, be careful not to re-enter the
same code. This will cause your application to stop responding.

Warning

 Module 6: Using Windows Forms 9

Setting and Retrieving Application Information
The Application class contains many useful properties that you can use to set
and retrieve application- level information.

You can use the CommonAppDataRegistry and UserAppDataRegistry
properties to set the keys to which shared and user -specific registry information
for your application will be written when you are installing an application.
After your application is installed, both of these properties are read-only.

The StartUpPath property specifies where the running executable file is stored,
just like the App.Path property in Visual Basic 6.0. You can use this
information to access other files that will be installed into the same folder.

The following example shows how you can use the StartUpPath property to
provide the installation path of the application:

Dim strAppPath As String
strAppPath = Application.StartupPath
'Use this path to access other files installed there

10 Module 6: Using Windows Forms

Examining the Code Behind Windows Forms

n Imports

l To alias namespaces in external assemblies

n Class

l Inherits from System.Windows.Forms.Form

l Constructor – Sub New()

l Initializer – Sub InitializeComponent()

l Destructor – Sub Dispose()

Imports Winforms = System.Windows.FormsImports Winforms = System.Windows.Forms

The structure of the code behind a Windows Form differs from the structure of
the code behind a Visual Basic 6.0 form because of the object-orientation of
the .NET Framework.

Imports
At the top of the code, you may find a list of Imports statements, which you
can use to provide access to functionality contained within namespaces in
referenced external assemblies. If you do not use an Imports statement, then all
references to classes in external assemblies must use fully qualified names.
Using Imports allows you to specify an alias to be used for the namespace.

The following example shows how to use the Imports statement to decla re an
alias of Winforms for the System.Windows.Forms namespace. This statement
allows you to use the alias in place of the full name for the rest of the form’s
code.

Imports Winforms = System.Windows.Forms

Class
A form is an instance of a class in Visual Basic .NET, so all the code belonging
to the form is enclosed within a Public Class definition. This structure allows
you to implement visual inheritance by creating forms that inherit from other
forms.

Inherits System.Windows.Forms.Form
Forms inherit from the System.Windows.Forms.Form class. If you create a
form in Visual Studio .NET, this inheritance is automatic, but if you create
forms elsewhere, you must manually add the Inherits statement. This gives you
the standard functionality of a form but allows you to override methods or
properties as required.

Topic Objective
To explain the basic
anatomy of Windows Form
code.

Lead-in
The structure of the code
behind a Windows Form is
different from that of a
Visual Basic 6.0 form.

Delivery Tip
It may be useful to open
a blank form in
Visual Basic .NET and
discuss these items in more
depth. However, the first
demonstration can also be
used to perform this task.

 Module 6: Using Windows Forms 11

Constructor
In Visual Basic 6.0, you use the Form_Initialize and Form_Load events to
initialize your forms. In Visual Basic .NET, the Form_Initialize event has been
replaced with the class constructor Public Sub New.

Initializer
As in previous versions of Visual Basic, you can assign many property values
at design time. These design-time values are used by the run-time system to
provide initial values. In Visual Basic 6.0, properties are initialized through
the run-time system, and the code is not visible to the developer. In
Visual Basic .NET, the Windows Form Designer creates a subroutine called
InitializeComponent that contains the settings you define in the properties
window at design time. This subroutine is called from the class constructor
code.

Destructor
In previous versions of Visual Basic, you use the Form_Terminate and
Form_Unload events to provide finalization code. In Visual Basic .NET, these
events have been replaced with the class destruc tor Public Sub Dispose and the
Form_Closed event. When a form is shown non-modally, Dispose is called
when the form is closed. When you show forms modally, you must call the
Dispose method yourself.

12 Module 6: Using Windows Forms

u Using Windows Forms

n Using Form Properties

n Using Form Methods

n Using Form Events

n Handling Events

n Creating MDI Forms

n Using Standard Dialog Boxes

Using Windows Forms is similar to using Visual Basic 6.0 forms, but there are
a number of new properties, methods, and events.

In this lesson, you will learn how to use the new form properties, methods, and
events. You will also learn how to use MDI forms and standard Windows
dialog boxes.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Windows Forms supply you
with some new functionality.

 Module 6: Using Windows Forms 13

Using Form Properties

n DialogResult

n Font

n Opacity

n MaximumSize and MinimumSize

n TopMost

n AcceptButton and CancelButton

Windows Forms have many new powerful properties that previously would
have required API calls to achieve a similar functionality. Many properties are
inherited from classes such as the Control, ScrollableControl, and
ContainerControl classes, and some properties are defined by the Form class
itself.

DialogResult
Windows Forms allow you to easily create your own customized dialog boxes.
You can create customized dialog boxes by setting the DialogResult property
for buttons on your form and displaying the form as a dialog box. Once the
form is closed, you can use the DialogResult property of the form to determine
which button was clicked.

The following example shows how to use the DialogResult property of a
Windows Form:

Form1.ShowDialog()
'The DialogResult property is updated when a button is pressed
and the form closed
If Form1.DialogResult = DialogResult.Yes Then
 'Do something
End If
Form1.Dispose()

Font
The Font property of a Windows Form behaves slightly differently than that of
a Visual Basic 6.0 form. Controls inherit Font.BackColor and Font.ForeColor
from their parent control. If the font is not set on a control, then the control
inherits the font from the parent. This allows you to change the font on the form,
and have all controls on the form automatically pick up that new font.

Topic Objectiv e
To explain some of the new
properties that Windows
Forms support.

Lead-in
Windows Forms include
many new properties.

14 Module 6: Using Windows Forms

Opacity
By default, all Windows Forms are 100% opaque. In Windows 2000, it is
possible to create forms that are transparent or translucent. You can do this by
changing the Opacity property of a form. This holds a double value between 0
and 1, with 1 being opaque and 0 being transparent.

The following example shows how to make a form 50% opaque:

Me.Opacity = 0.5

MaximumSize and MinimumSize
These two properties allow you to define maximum and minimum sizes of a
form at run time. Their data type is Size, which has a Height property and a
Width property to define a total size of the form.

The following example shows how to use these properties:

Dim MaxSize As New Size()
Dim MinSize As New Size()
MaxSize.Height = 500
MaxSize.Width = 500
MinSize.Height = 200
MinSize.Width = 200
Me.MaximumSize = MaxSize
Me.MinimumSize = MinSize

TopMost
The TopMost property allows your form to remain on top of all other windows,
even when it does not have the focus. This is what the Windows Task Manager
does by default. In previous versions of Visual Basic, this frequently used
feature can be achieved only by using API calls. In Visual Basic .NET, you
simply assign a Boolean property of a Windows Form.

The following example shows how to toggle the TopMost property:

Me.TopMost = Not Me.TopMost

AcceptButton and CancelButton
The AcceptButton and CancelButton properties of a Windows Form allow
you to specify which buttons should be activated when the ENTER and ESC
keys are pressed, like setting the Default and Cancel properties of
CommandButtons in Visual Basic 6.0. The following example shows how to
specify your OK and Cancel buttons as the AcceptButton and CancelButton:

Me.AcceptButton = btnOK
Me.CancelButton = btnCancel

 Module 6: Using Windows Forms 15

Using Form Methods

n CenterToScreen and CenterToParent

n Close

n Show and ShowDialog

Windows Forms provide several new methods in addition to supporting some
existing methods from previous versions of Visual Basic, such as Hide and
Refresh.

CenterToScreen and CenterToParent
You can use these two methods to center your forms on the screen or on the
parent of the form. If you use the CenterToParent method on a top-level form,
it will be centered to the screen. Neither method takes any arguments.

Close
This method is similar to the Unload method in Visual Basic 6.0. You can use
it to close the current form and release any resources it is holding. The
following example shows how to use the Close method of a Windows Form:

If blnEndApp = True Then
 Me.Close()
End If

Topic Objective
To explain how to use some
Windows Forms methods.

Lead-in
Windows Forms support
several new methods.

16 Module 6: Using Windows Forms

Show and ShowDialog
You can use these methods to display a form on the screen. The Show method
simply displays the form by setting its Visible property to True. The
ShowDialog method displays the form as a modal dialog box.

The following example shows how to display a form as a modal dialog box and
how to use the DialogResult property of the form to determine the action to be
taken:

Dim frm2 As New Form2()
frm2.ShowDialog()
If frm2.DialogResult = DialogResult.OK Then
 MessageBox.Show("Processing request")
ElseIf frm2.DialogResult = DialogResult.Cancel Then
 MessageBox.Show("Cancelling request")
End If
frm2.Dispose()

 Module 6: Using Windows Forms 17

Using Form Events

n Activated and Deactivate

n Closing

n Closed

n MenuStart and MenuComplete

Many events from previous versions of Visual Basic are unchanged in
Visual Basic .NET, such as mouse and focus events (although these events do
have different parameters). Several events have been replaced with slightly
different events from the .NET Framework to become standard across
the .NET-compatible languages. A number of new events have also been added
to allow further flexibility when designing Windows Forms–based applications.
In this topic, you will take a closer look at these changes.

Activated and Deactivate
The Activated event is raised when the form is activated by code or by user
interaction, and the Deactivate event is raised when the form loses focus. In
Visual Basic 6.0, the Activate event was raised only when the form was
activated from within the same application. In Visual Basic .NET, it is raised
whenever the form is activated, regardless of where it is activated from. You
can use this event to ensure that a particular control is always selected when
you activate a form.

The following example shows how to use the Activated event to select the text
in a text box:

Private Sub Form2_Activated(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Activated
 TextBox1.Focus()
 TextBox1.SelectAll()
End Sub

Topic Objective
To explain some of the form
events that are in the
Windows Forms framework.

Lead-in
The Windows Forms
framework provides a series
of familiar and not– so-
familiar form events.

18 Module 6: Using Windows Forms

Closing
This event is similar to the Visual Basic 6.0 Unload event. It occurs when the
form is being closed and allows you to cancel the closure through the use of the
CancelEventArgs argument.

The following example shows how to use the Closing event to query whether
the user wants to end the application:

Private Sub Form1_Closing(ByVal sender As Object, ByVal e As
System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
If MessageBox.Show("Do you really want to close this form?",
"Closing", MessageBoxButtons.YesNo) = DialogResult.No Then

 e.Cancel() = True
 End If
End Sub

Closed
The Closed event occurs after the Closing event but before the Dispose method
of a form. You can use it to perform tasks such as saving information from the
form.

The following example shows how to use the Closed event to store information
in a global variable:

Private Sub Form2_Closed(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles MyBase.Closed
 strName = "Charlie"
End Sub

MenuStart and MenuComplete
These two events are raised when a menu receives and loses foc us. You can use
these events to set properties of the menu items, such as the Checked or
Enabled property.

The following example shows how to enable and disable menu items based on
the type of control on the form that currently has the focus:

If TypeOf (ActiveControl) Is TextBox Then
 mnuCut.Enabled = True
 mnuCopy.Enabled = True
Else
 mnuCut.Enabled = False
 mnuCopy.Enabled = False
End If

 Module 6: Using Windows Forms 19

Handling Events

n Handling Multiple Events with One Procedure

n Using AddHandler

Private Sub AddOrEditButtonClick(ByVal sender As Object,
ByVal e As System.EventArgs)
Handles btnAdd.Click, btnEdit.Click

Private Sub AddOrEditButtonClick(ByVal sender As Object,
ByVal e As System.EventArgs)
Handles btnAdd.Click, btnEdit.Click

AddHandler btnNext.Click, AddressOf NavigateBtnClickAddHandler btnNext.Click, AddressOf NavigateBtnClick

In previous vers ions of Visual Basic, you create event handlers by selecting the
object and event from the Object and Procedure boxes in the Code Editor.
You can create event handlers in Visual Basic .NET the same way, although to
create some of the common event handlers for forms, you need to access the
(Base Class Events) group in the Object box. You can also add event handlers
programmatically by using the AddHandler keyword.

Handling Multiple Events with One Procedure
Events can also be handled by any procedure that matches the argument list of
the event, also referred to as its signature. This allows you to handle events
from multiple controls within one procedure, reducing code duplication in a
similar way that control arrays do in previous versions of Visual Basic.

You can achieve this functionality by using the Handles keyword in
conjunction with controls that are declared using the WithEvents keyword.

The following example shows how to handle multiple events programmatically
with one procedure:

Private Sub AddOrEditButtonClick(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnAdd.Click,
btnEdit.Click
 btnFirst.Enabled = False
 btnLast.Enabled = False
 btnNext.Enabled = False
 btnPrevious.Enabled = False
 btnSave.Enabled = True
 btnCancel.Enabled = True
End Sub

Topic Objective
To explain how to handle
events in Windows Forms.

Lead-in
Event handling has changed
significantly since Visual
Basic 6.0.

Delivery Tip
Point out the benefits of the
different approaches,
particularly that of the ability
to handle multiple control
events from the one
handler.

Ensure that students
understand the two common
arguments that are sent to
event handlers:
The sender argument: the
object that raised the event.
The e argument: common
types of arguments, such as
EventArgs or
MouseEventArgs.

20 Module 6: Using Windows Forms

The signature of an event is the list of variables passed to an event-
handling procedure. For a procedure to handle multiple events, or to handle
events from multiple controls, the argument list must be identical for each event
or else a compilation error will occur.

Using AddHandler
The AddHandler keyword allows you to add event handling to your form or
control at run time by using one of two techniques, as is described for classes in
Module 5, “Object-Oriented Programming in Visual Basic .NET,” in Course
2373A, Programming with Microsoft Visual Basic .NET (Prerelease). It is
similar to the Handles keyword in that it also allows you to use one event-
handling procedure for multiple events or multiple controls. With AddHandler,
however, you do not need to declare the control variable by using the
WithEvents modifier. This allows a more dynamic attaching of events to
handlers.

The following example shows how to use the AddHandler keyword to assign
control events to procedure:

Private Sub NavigateBtnClick(ByVal sender As System.Object,
ByVal e As System.EventArgs)
 MessageBox.Show("Moving record")
End Sub

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
 AddHandler btnNext.Click, AddressOf NavigateBtnClick
 AddHandler btnPrevious.Click, AddressOf NavigateBtnClick
End Sub

The RemoveHandler keyword removes an event handler from a form or
control’s event. For more information about RemoveHandler, see Module 5,
“Object-Oriented Programming in Visual Basic .NET,” in Course 2373A,
Programming with Microsoft Visual Basic .NET (Prerelease) .

Note

Note

 Module 6: Using Windows Forms 21

Practice: Using Form Events

In this practice, you will create a Windows-based application containing a
single form that displays event information in the Debug Output window.

å To create the application
1. Open Visual Studio .NET.

2. On the File menu, select New, and then click Project. Set the location to
install folder\Practices\Mod06, and rename the solution FormEvents.

3. Create event handlers for the following form events, and enter the specified
code in the code window.

Event Code

Form1_Activated Debug.WriteLine("Activated")

Form1_Closed Debug.WriteLine("Closing")

Form1_Deactivate Debug.WriteLine("Deactivated")

Form1_SizeChanged Debug.WriteLine("Size changed")

å To test the application

1. On the Debug menu, click Start.

2. On the View menu, point to Other Windows, and then click Output to
display the Debug Output window.

3. Perform the following actions on the form: Resize , Minimize, Restore, and
Close. (Ensure that you can view the activity in the Debug Output window
as you perform each action.)

4. Close Visual Studio .NET.

Topic Objective
To practice using form
events.

Lead-in
In this practice, you will
create a simple form in
order to observe the events
of the form.

22 Module 6: Using Windows Forms

Creating MDI Forms

n Creating the Parent Form

n Creating Child Forms

n Accessing Child Forms

n Arranging Child Forms

Me.IsMdiContainer = True
Me.WindowState = FormWindowState.Maximized
Me.IsMdiContainer = True
Me.WindowState = FormWindowState.Maximized

Dim doc As Form2 = New Form2()
doc.MdiParent = Me
doc.Show()

Dim doc As Form2 = New Form2()
doc.MdiParent = Me
doc.Show()

Creating multiple-document interface (MDI) applications is a common task for
Visual Basic developers. There have been a number of changes to this process
in Visual Basic .NET, although the basic concepts of a parent forms and child
forms remain the same.

Creating the Parent Form
You can use the IsMdiContainer property of a form to make it an MDI parent
form. This property holds a Boolean value and can be set at design time or run
time.

The following example shows how to specify a form as an MDI parent and
maximize it for easy use.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
 Me.IsMdiContainer = True
 Me.WindowState = FormWindowState.Maximized
End Sub

Topic Objective
To explain how to create
MDI applications.

Lead-in
Creating MDI applications is
a common task for a Visual
Basic developer.

 Module 6: Using Windows Forms 23

Creating Child Forms
You can create child forms by setting the MdiParent property of a form to the
name of the already-created MDI parent.

The following example shows how to create an MDI child form. This procedure
could be called from the Form_Load procedure, and a New Document menu
item. It uses a global variable to store the number of child windows for use in
the caption of each window.

Private Sub AddDoc()
 WindowCount = WindowCount + 1
 Dim doc As Form2 = New Form2()
 doc.MdiParent = Me
 doc.Text = "Form" & WindowCount
 doc.Show()
End Sub

Accessing Child Forms
It is common to use menus on the MDI parent form to manipulate parts of the
MDI child forms. When you use this approach, you need to be able to
determine which is the ac tive child form at any point in time. The
ActiveMdiChild property of the parent form identifies this for you.

The following example shows how to close the active child form:

Private Sub mnuFileClose_Click(ByVal sender As Object, ByVal e
As System.EventArgs) Handles mnuFileClose.Click
 Me.ActiveMdiChild.Close()
End Sub

Arranging Child Forms
You can use the LayoutMdi method of the parent form to arrange the child
forms in the main window. This method takes one parameter that can be one of
the following:

n MdiLayout.Cascade

n MdiLayout.ArrangeIcons

n MdiLayout.TileHorizontal

n MdiLayout.TileVertical

24 Module 6: Using Windows Forms

The following examples show how to use these settings:

Private Sub mnuWindowCascade_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
mnuWindowCascade.Click
 Me.LayoutMdi(MdiLayout.Cascade)
End Sub

Private Sub mnuWinArrIcons_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles mnuWinArrIcons.Click
 Me.LayoutMdi(MdiLayout.ArrangeIcons)
End Sub

Private Sub mnuWinTileHoriz_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
mnuWinTileHoriz.Click
 Me.LayoutMdi(MdiLayout.TileHorizontal)
End Sub

Private Sub mnuWinTileVert_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles mnuWinTileVert.Click
 Me.LayoutMdi(MdiLayout.TileVertical)
End Sub

Creating a Window List
In previous versions of Visual Basic, you can set the WindowList property
of a menu to create a list of child forms at the bottom of that menu. In
Visual Basic .NET, you can achieve this functionality by setting the MdiList
property of a menu.

 Module 6: Using Windows Forms 25

Using Standard Dialog Boxes

n MsgBox

n MessageBox Class

n InputBox

If MsgBox("Continue?", MsgBoxStyle.YesNo +
MsgBoxStyle.Question, "Question") = MsgBoxResult.Yes Then

...
End If

If MsgBox("Continue?", MsgBoxStyle.YesNo +
MsgBoxStyle.Question, "Question") = MsgBoxResult.Yes Then

...
End If

If MessageBox.Show("Continue?", "Question",
MessageBoxButtons.YesNo, MessageBoxIcon.Question)
= DialogResult().Yes Then

...
End If

If MessageBox.Show("Continue?", "Question",
MessageBoxButtons.YesNo, MessageBoxIcon.Question)
= DialogResult().Yes Then

...
End If

Modal forms or dialog boxes require that users close the window before they
can continue interacting with other windows in the application. You can create
them in any of three different ways.

MsgBox
The traditional MsgBox function used by Visual Basic developers is still
provided in the .NET Framework. You use the same syntax that you used in
previous versions, except you define the display style by the MsgBoxStyle
enumeration and the resulting user decision by the MsgBoxResult enumeration.
The following example shows how to use the MsgBox function:

If MsgBox("Continue?", _
 MsgBoxStyle.YesNo + MsgBoxStyle.Question, _
 "Question") _
 = MsgBoxResult.Yes Then
 ...
End If

Topic Objective
To explain how to display
standard dialog boxes.

Lead-in
There are several ways to
display a dialog box and
retrieve input from a user.

26 Module 6: Using Windows Forms

MessageBox Class
In the .NET Framework, you use the MessageBox class for displaying a simple
message in a dialog box. It provides a Show method and integer constants for
controlling the display style of the message box. You can compare the resulting
user decision to the System.Windows.Forms.DialogResult enumeration, as
shown in the following example:

If MessageBox.Show("Continue?", "Question", _
 MessageBoxButtons.YesNo, MessageBoxIcon.Question) _
 = DialogResult.Yes Then
 ...
End If

The Show method allows extra flexibility by allowing you to optionally specify
a different form as the owner of the dialog box.

InputBox
The InputBox function is still supported in Visual Basic .NET and has not
changed from previous versions of Visual Basic.

 Module 6: Using Windows Forms 27

Demonstration: Manipulating Windows Forms

In this demonstration, you will learn how to use the properties and methods of a
Windows Form, including owner forms, opacity, and automatic scrolling.

Topic Objective
To demonstrate how to
manipulate Windows Forms.

Lead-in
This demonstration shows
how to use properties and
methods of a Windows
Form.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

28 Module 6: Using Windows Forms

u Using Controls

n New Controls

n Using Control Properties

n Using Control Methods

n Creating Menus

n Providing User Help

n Implementing Drag-and-Drop Functionality

Visual Basic .NET introduces several new controls and many enhancements to
the way you use existing controls.

After completing this lesson, you will be able to:

n Describe the new controls in the developer’s Toolbox.

n Apply new properties and methods to existing controls.

n Use menus to improve user interaction with your application.

n Implement a Help system for your application.

n Create drag-and-drop operations.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Many controls have
undergone enhancements in
Visual Basic .NET, and new
controls have been added to
the Toolbox.

 Module 6: Using Windows Forms 29

New Controls

n CheckedListBox

n LinkLabel

n Splitter

n ToolTip

n NotifyIcon

Visual Basic .NET provides many controls that will be familiar to Visual Basic
developers, in addition to some new controls to help you create your Windows
Forms–based applications. There are also some controls provided in the default
Toolbox that are only available by using ActiveX® controls in
Visual Basic 6.0, such as the CommonDialog controls and the Windows
common controls library.

CheckedListBox
The CheckedListBox control allows you to use a list box with check boxes
beside each item. This is a commonly used control in Windows and was
previously available through the Style property of a standard ListBox.

The following example shows how you can use the CheckedItems property to
access the selected items in the list:

Dim intTotalChecked As Integer
For intTotalChecked = 0 To CheckedListBox1.CheckedItems.Count
- 1
 Messagebox.Show(CheckedListBox1.CheckedItems(intTotalChecked
).ToString)
Next

Topic Objective
To explain some of the
new controls in
Visual Basic .NET.

Lead-in
There are several new
controls available in
Visual Basic .NET.

30 Module 6: Using Windows Forms

LinkLabel
Using the LinkLabel control, you can display hyperlinks on a form. You can
specify the Text of the hyperlink and the VisitedLinkColor and LinkColor of
links. The default event for a LinkedLabel control is the LinkClicked event.
The following example shows how you can use this to display a Web page in a
WebBrowser control:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 LinkLabel1.Text = "www.microsoft.com"
 LinkLabel1.LinkColor = Color.Blue
 LinkLabel1.VisitedLinkColor = Color.Purple
End Sub

Private Sub LinkLabel1_LinkClicked(ByVal sender As
System.Object, ByVal e As
System.Windows.Forms.LinkLabelLinkClickedEventArgs) Handles
LinkLabel1.LinkClicked
 AxWebBrowser1.Navigate(LinkLabel1.Text)
End Sub

Splitter
Splitter controls have become a common feature of Microsoft applications over
the last few years. Visual Basic .NET provides a built-in control to allow the
user to resize the different sections of your form without any need for resizing
code.

To use the Splitter control, you must perform the following steps:

1. Add the control to be resized to a container.

2. Dock the control to one side of the container.

3. Add the Splitter to the container.

4. Dock the Splitter to the side of the control to be resized.

After completing these steps, when you rest the mouse pointer on the edge of
the control, the pointer will change shape and the control can be resized.

 Module 6: Using Windows Forms 31

ToolTip
In Visual Basic 6.0, most built-in controls have a ToolTip property that allows
you to attach textual Help to a control. This is implemented by means of the
ToolTip control in Visual Basic .NET. You can use one ToolTip control to
implement ToolTips on many controls on your form. The following example
shows how to link the ToolTip text to be used with a particular control in the
Form_Load event:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 ToolTip1.SetToolTip(Button1, "Click to confirm")
 ToolTip1.SetToolTip(Button2, "Click to cancel")
End Sub

NotifyIcon
The NotifyIcon control is a component that displays an icon in the notification
area of the Windows taskbar, like the Windows Volume Control icon. The
component is placed in the component tray of the Windows Forms Designer for
a particular form. When that form is displayed at run time, the icon will display
automatically in the notification area and will be removed when the Dispose
method of the TrayIcon component is called. A ContextMenu can be
associated with the component so that users can right-click on the icon and
select options from the menu.

For more information about other new controls, search for “Controls” in
the Visual Basic .NET documentation.

Note

32 Module 6: Using Windows Forms

Using Control Properties

n Positioning

l Anchor

l Location

n Text Property

Button1.Text = "Click Me"Button1.Text = "Click Me"

Many of the Windows Forms controls share some new common properties
because they inherit from the same base classes.

Positioning
In Visual Basic 6.0, you regularly have to write code to cope with the resizing
of a form. If a user maximizes a form at run time, the controls will stay in their
original position relative to the top left corner of a form. This means that if you
have a set of command buttons— for example, OK and Cancel— positioned
either in the top right corner of a form or across the bottom of a form, you need
to write your own code to reposition these controls. In Visual Basic .NET, this
type of functionality is built into the controls and form classes.

n Anchor property

In Visual Basic .NET, you can anchor a control to the top, bottom, left, or
right side of a form (or any combination). This means that at design time
you can use the Properties window to anchor a control, and you no longer
need to write repositioning code in the Resize event of a form.

n Resizing

Because you can anchor any or all of the sides of a control, you can
effectively resize a control to correspond to the resizing of a form. If you
have a form containing a picture box that you want to fill the form, you can
anchor it to all sides, and it will remain the same distance from the edges of
the form at all times. This feature cannot override the size restrictions
applied to some of the Visual Basic .NET controls, such as the height of a
combo box.

n Location property

This property allows you to specify the location of a control with respect to
the top left corner of its container. The property takes a Point data type,
which represents an x and y coordinate pair. This property replaces the Top
and Left properties used in Visual Basic 6.

Topic Objective
To explain some of the
common properties that
many controls share.

Lead-in
Many controls share some
new common properties.

 Module 6: Using Windows Forms 33

Text Property
In earlier versions of Visual Basic, you used different methods to set the text
displayed in the various controls. For instance, Forms and Label controls
have a Caption property, whereas TextBox controls have a Text property. In
Visual Basic .NET, any textual property of a control is determined by the Text
property. This provides consistency within Visual Basic, and with the
other .NET -compatible languages.

The following example shows how to initialize a Button control in the
Form_Load or InitializeComponent procedures.

Button1.Top = 20
Button1.Height = 50
Button1.Left = 20
Button1.Width = 120
Button1.Text = "Click Me"

34 Module 6: Using Windows Forms

Using Control Methods

n BringToFront and SendToBack

n Focus

TextBox1.Focus()
TextBox1.SelectAll()
TextBox1.Focus()
TextBox1.SelectAll()

Button1.BringToFront()
Button2.SendToBack()
Button1.BringToFront()
Button2.SendToBack()

Many of the Windows Forms controls share some new common methods
because they inherit from the same base classes.

BringToFront and SendToBack
You can use the BringToFront method of a control to place it in front of other
controls, and the SendToBack method to place it behind all other controls. In
earlier versions of Visual Basic, you can achieve this functionality by setting
the ZOrder property of a control. The following example shows how to
rearrange the order of controls at run time:

Button1.BringToFront()
Button2.SendToBack()

Focus
You can use this method to set the focus to a specific control. It is similar to the
SetFocus method used in Visual Basic 6.0. The following example shows how
to check the Text property of a TextBox control and return focus to the control
if the text is not valid:

If TextBox1.Text <> "password" Then
 MessageBox.Show("Incorrect password")
 TextBox1.Focus()
 TextBox1.SelectAll()
End If

When trapping focus events, you should use the Enter and Leave events, rather
than the GotFocus and LostFocus events.

Topic Objective
To explain some of the new
methods common to many
controls.

Lead-in
Many controls share some
new methods.

 Module 6: Using Windows Forms 35

Creating Menus

n Menu Classes

n Creating Menus at Design Time

l Use the Menu Designer

n Creating Menus at Run Time

Dim mnuMain As New MainMenu()
Dim mnuItem1 As New MenuItem, mnuItem2 As New MenuItem()
mnuItem1.Text = "File"
mnuMain.MenuItems.Add(mnuItem1)
mnuItem2.Text = "Exit"
mnuMain.MenuItems(0).MenuItems.Add(mnuItem2)
AddHandler mnuItem2.Click, AddressOf NewExitHandler
Menu = mnuMain

Dim mnuMain As New MainMenu()
Dim mnuItem1 As New MenuItem, mnuItem2 As New MenuItem()
mnuItem1.Text = "File"
mnuMain.MenuItems.Add(mnuItem1)
mnuItem2.Text = "Exit"
mnuMain.MenuItems(0).MenuItems.Add(mnuItem2)
AddHandler mnuItem2.Click, AddressOf NewExitHandler
Menu = mnuMain

In Visual Basic .NET, the process of creating menus is very different from that
of Visual Basic 6.0. You can have more than one menu system per form, which
reduces the complexity of creating dynamic menus, and you can create
ContextMenus directly without designing them as top-level menus first.

Menu Classes
There are three main classes that you will use when creating menus:

n MainMenu

You use the MainMenu class to create a standard Windows menu bar at the
top of a form.

n ContextMenu

You use the ContextMenu class to define pop-up menus associated with
particular controls.

n MenuItem

You use the MenuItem class to define menu items within a MainMenu or a
ContextMenu.

Topic Objective
To explain the new changes
to menu creation.

Lead-in
Menus have been greatly
enhanced in
Visual Basic .NET.

36 Module 6: Using Windows Forms

Creating Menus at Design Time
You can use the Menu Designer to create your menus at design time, which is
something you cannot do in Visual Basic 6.0. You can also design and edit your
menus in-place, rather than in a separate dialog box.

Creating Menus at Run Time
You can add or edit menus at run time by using the MainMenu, ContextMenu,
and MenuItem classes. Each of these classes contains a MenuItems collection
that has Add and Remove methods. The following example shows how to
dynamically create menus:

Dim mnuMain As New MainMenu()
Dim mnuItem1 As New MenuItem()
Dim mnuItem2 As New MenuItem()

mnuItem1.Text = "File"
mnuMain.MenuItems.Add(mnuItem1)

mnuItem2.Text = "Exit"
mnuMain.MenuItems(0).MenuItems.Add(mnuItem2)
AddHandler mnuItem2.Click, AddressOf NewExitHandler

Menu = mnuMain

Delivery Tip
Demonstrate how to add a
menu to a form by using the
Menu Designer.
Most students should
understand this concept
quickly, so this should not
be a lengthy discussion.

 Module 6: Using Windows Forms 37

Providing User Help

n ErrorProvider Control

l Error icon appears next to control, and message
appears like a ToolTip when mouse pauses over icon

l Used mainly for data binding

n HelpProvider Control

l Points to .chm, .hlp, or .html Help file

l Controls provide Help information by means of
HelpString or HelpTopic properties

Visual Basic .NET allows you to create user Help in a number of ways by using
controls. Each of these controls is placed in the component tray for an
individual form.

ErrorProvider Control
The ErrorProvider control indicates to the user that a control has an error
associated with it by displaying a small icon near the control. When the user
pauses the mouse over the icon, a ToolTip showing the error message appears.
ErrorProvider can also be used with bound data.

You can set your own error messages manually, as shown in the following
example, or when working with bound data, you set the DataSource property
of the ErrorProvider to automatically pick error messages up from the
database.

Public Sub TextBox1_Validating(ByVal sender As Object, _
 ByVal e As System.ComponentModel.CancelEventArgs) Handles
TextBox1.Validating

 If TextBox1.Text = "" Then
 ErrorProvider1.SetError(TextBox1, _
 "Please enter a value for the text box")
 Else
 ErrorProvider1.SetError(TextBox1, "")
 End If
End Sub

The Validating event is raised whenever the next control receives focus,
providing that the next control has CausesValidation property set to True,
allowing the Text property of the control to be tested. If this property contains
an empty string, the ErrorProvider will display an exclamation icon next to
the control and update the ToolTip for the error. If the error message is an
empty string, the icon does not appear.

Topic Objective
To explain the ways in
which to provide Help.

Lead-in
There are several ways to
provide Help in
Visual Basic .NET.

Delivery Tip
Discuss the relevant
methods of each control that
are used to set information,
as mentioned in the student
notes.

38 Module 6: Using Windows Forms

HelpProvider Control
You can use the HelpProvider control to display a simple pop-up Help window
or online Help from a Help file specified by the
HelpProvider.HelpNamespace property. This Help is automatically activated
when the user presses the F1 Help key while a control has focus.

Implementing Pop-up Help
You can specify pop-up Help at design time by using the HelpString property
in the Properties window for each control. Each control can have more than one
HelpString property if the form has more than one HelpProvider control, if
you use the format HelpString on HelpProviderControlName. You can also set
the Help string programmatically by using the SetHelpString method of the
HelpProvider control, passing in the control reference and the Help string.

Implementing Online Help
If you specify a Help file, each control can specify the relevant Help topic with
the HelpTopic property. As for the HelpString property, each control can have
more than one HelpTopic property if the form has more than one
HelpProvider control, if you use the format HelpTopic on
HelpProviderControlName. The Help topic can also be set programmatically by
using the SetTopicString method of the HelpProvider control, passing in the
control reference and the Help topic string.

Using SetShowHelp
You can also turn Help on or off for an individual control by using the
SetShowHelp method of the HelpProvider control as shown in this example:

Sub SetTextboxHelp()
 HelpProvider1.SetHelpString(TextBox1, "This is my help")
 HelpProvider1.SetShowHelp(TextBox1, True) 'True = On
End Sub

 Module 6: Using Windows Forms 39

Demonstration: Using Controls

In this demonstration, you will learn how to use the layout properties of a
Button control. You will also learn how to handle control events from multiple
controls in one event handler. Finally, you will learn how to provide simple
user assistance with the HelpProvider and ToolTip controls, and how to
programmatically create a context menu.

Topic Objective
To demonstrate various
layout properties and
methods of controls, and
how to provide simple user
assistance.

Lead-in
This demonstration shows
the effects of the layout
properties of controls, and
various other aspects of
using controls in Windows
Forms.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

40 Module 6: Using Windows Forms

Implementing Drag-and-Drop Functionality

n Starting the Process

l Use the DoDragDrop method in the MouseDown event
of the originating control

n Changing the Drag Icon

l Set the AllowDrop property of the receiving control to
True

l Set the Effect property of the DragEventsArg in the
DragOver event of the receiving control

n Dropping the Data

l Use the Data.GetData method to access the data

Drag-and-drop techniques in Visual Basic .NET are significantly different from
those of previous versions of Visual Basic.

Starting the Process
You can use the DoDragDrop method of a control to initiate the dragging and
to halt the execution of code until the item is dropped. This method takes two
parameters: data, which defines the information that is to be dropped, and
allowedEffects which defines which operations are valid, such as Copy, Move,
Link and so on.

The following example shows how to use the DoDragDrop method to begin
the dragging process:

Private Sub TextBox1_MouseDown(ByVal sender As System.Object,
ByVal e As MouseEventArgs) Handles TextBox1.MouseDown
 Dim DragDropResult As DragDropEffects
 If e.Button = MouseButtons.Left Then
 DragDropResult = TextBox1.DoDragDrop(TextBox1.Text, _
 DragDropEffects.All)
 If DragDropResult = DragDropEffects.Move Then
 TextBox1.Text = ""
 End If
 End If
End Sub

Topic Objective
To explain drag-and-drop
drop techniques.

Lead-in
Drag-and-drop techniques
have changed significantly
in Visual Basic .NET.

 Module 6: Using Windows Forms 41

Changing the Drag Icon
For a control to receive drag-drop notifications, you must set its the AllowDrop
property to True . Without this setting, the DragDrop, DragOver, DragEnter,
and DragLeave events will not execute.

You can use the KeyState property of the DragEventsArg argument passed to
controls in the DragOver event of a control to change the drag icon to an
appropriate symbol. This helps the user to know what action they are about to
perform. This property is an integer property that specifies which keys (such as
SHIFT and CONTROL) are being held down during the drag process.

The following example shows how to set the appropriate icon:

Private Sub TextBox2_DragOver(ByVal sender As Object, ByVal e
As DragEventArgs) Handles TextBox2.DragOver
 Select Case e.KeyState
 Case 1
 'No key pressed
 e.Effect = DragDropEffects.Move
 Case 9
 'CONTROL key pressed
 e.Effect = DragDropEffects.Copy
 Case Else
 e.Effect = DragDropEffects.None
 End Select
End Sub

Dropping the Data
You can drop the data in the DragDrop event of the receiving control. The
following example shows how to write code to accept textual data from another
TextBox control:

Public Sub TextBox2_DragDrop(ByVal sender As Object, ByVal e
As DragEventArgs) Handles TextBox2.DragDrop
 TextBox2.Text = e.Data.GetData(DataFormats.Text).ToString
End Sub

42 Module 6: Using Windows Forms

Demonstration: Implementing Drag-and-Drop
Functionality

In this demonstration, you will learn how to use drag-and-drop operations
within a simple application.

Topic Objective
To demonstrate simple
drag-and-drop functionality
within an application.

Lead-in
This demonstration shows
at how to use drag-and-drop
functionality within an
application.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 6: Using Windows Forms 43

u Windows Forms Inheritance

n Why Inherit from a Form?

n Creating the Base Form

n Creating the Inherited Form

n Modifying the Base Form

Visual Basic .NET introduces the concept of visual inheritance to Visual Basic
developers. This type of inheritance can improve code reuse in your
applications and provide them with a standard appearance and behavior.

After you complete this lesson, you will be able to use visual inheritance to:

n Create a form that inherits from a given base form.

n Modify a base form from which other forms have inherited.

Topic Objective
To provide an overview of
the topics covered in this
lesson.

Lead-in
Visual Basic .NET
introduces the concept of
visual inheritance to
Visual Basic developers.

44 Module 6: Using Windows Forms

Why Inherit from a Form?

n A Form Is a Class, So It Can Use Inheritance

n Applications Will Have a Standard Appearance and
Behavior

n Changes to the Base Form Will Be Applied to Derived
Forms

n Common Examples:

l Wizard forms

l Logon forms

You will likely need to create forms that are similar to forms you have created
before. In previous versions of Visual Basic, you can create templates on which
to base your forms. In Visual Basic .NET, you can inherit from existing forms.

Inheriting from a form is as simple as deriving one class from another, because
a form is simply a class with an extra visual component. This technique allows
you to define a base form that can be derived from in order to create a standard
appearance and behavior of your applications. It also shares the same benefits
as class inheritance, in that code can be reused from the base form in all of the
derived forms.

Any changes that you make to the base form can be applied to any of the
derived forms, making simple updates to multiple forms easy.

You can use visual inheritance whenever forms behave in a similar way or need
to have a standard appearance. Common examples of these types of forms are
wizards and logon forms.

Topic Objective
To explain the reasons for
visual inheritance.

Lead-in
You can improve code
reuse by using visual
inheritance.

 Module 6: Using Windows Forms 45

Creating the Base Form

1. Carefully Plan the Base Form

2. Create the Base Form as for a Normal Form

3. Set the Access Modifiers Property of Controls

l Private – Control can only be modified in the base form

l Protected – Control can be modified by deriving form

l Public – Control can be modified by any code module

4. Add the Overridable Keyword to Appropriate Methods

5. Build the Solution for the Base Form

The base form serves as the template for your standard form. You design and
code the form in the usual way, to perform whatever functionality you want to
be inherited. After you have created the base form, you can build your solution
to make the form accessible, and then inherit from it.

When creating a base form, use the following process:

1. Carefully plan the base form.

Changes are easier to make before any forms inherit from your base form
because making changes afterwards will require extra retesting.

2. Create the base form as you would a normal form.

Create the base form using the same techniques you would use to create a
normal form.

3. Set the access modifiers property of controls.

• Private controls cannot have their properties modified outside of the
base form.

• Public controls can have their properties modified by any form or code
module without restriction.

4. Add the Overridable keyword to appropriate methods.

Any method that can be overridden in a derived form must be marked as
overridable in the base form.

5. Build the solution for the base form.

You cannot create a form that inherits from a base form until the base form
has been built.

Topic Objective
To explain the process for
creating a base form.

Lead-in
Creating a base form
requires a bit of careful
planning.

46 Module 6: Using Windows Forms

Creating the Inherited Form

n Ensure the Base Form Is as Complete as Possible

n Reference the Assembly

n Create a New Inherited Form Item

n Change Control Properties Where Necessary

n Override Methods or Events as Required

After you have designed your base form and built the solution, you are ready to
begin deriving forms. To do this, you simply add a new item to the project by
clicking Inherited Form in the Add New Item window. This will run the
Inheritance Picker for you.

When inheriting from a base Windows Form, consider the following guidelines
carefully:

n Ensure that the base form is as complete as possible.

Make any last minute changes to the base form before inheriting from it.

n Reference the assembly.

If the base form is not in the same project, you must make a reference to the
appropriate assembly.

n Create a new Inherited Form item.

Add a new Inherited Form item to your project, selecting the base form in
the Inheritance Picker dialog box. A list of available base forms is shown,
and you can browse for other assemblies.

n Change control properties where necessary.

You can programmatically change public and protected controls, and you
can use the Properties window of the Windows Forms Designer for a
derived form. Private controls cannot be altered outside of the base form.

n Override methods or events as required.

If methods or event handlers have been marked as overridable, you can
implement your own code in the derived form.

Topic Objective
To explain how to create an
inherited form.

Lead-in
Creating an inherited form is
simple.

 Module 6: Using Windows Forms 47

Modifying the Base Form

n Changing the Base Form

l Changes affect derived forms when rebuilt

n Checking Derived Forms

l Verify changes before rebuilding application

l Retest after rebuilding application

The derived form is linked directly to the base form; it is not a copy of the base
form. This means that changes you make to the base form will be reflected in
the derived form when the project is rebuilt. You can quickly update a series of
forms that contain the same code or visual elements by making the changes in
the base form. However, you may find that changes that are valid in the base
form can introduce errors into the derived forms.

For example, any overridden method that calls a method on the MyBase object
may expect a certain behavior, and careful retesting is needed to validate this
expectation. This is true of all types of inheritance, not just visual inheritance.

Topic Objective
To explain the impact of
modifying a base form after
it has been inherited.

Lead-in
You can modify your base
form after it has been
inherited.

48 Module 6: Using Windows Forms

Demonstration: Using Windows Forms Inheritance

In this demonstration, you will learn how to create a base form specifically for
inheritance purposes. You will learn how to inherit from the form and how to
override properties and methods of the base form controls. Finally, you will
learn how to modify the base form after it has been used for inheritance and
learn the effects the base form modifications have on the derived form.

Topic Objective
To demonstrate visual
inheritance.

Lead-in
This demonstration shows
how to achieve visual
inheritance by using
Windows Forms.

Delivery Tip
The step-by-step
instructions for this
demonstration are in the
instructor notes for this
module.

 Module 6: Using Windows Forms 49

Lab 6.1: Creating the Customer Form

Objectives
After completing this lab, you will be able to:

n Use Windows Forms in an application.

n Use the layout properties of controls.

n Create menus.

n Provide user assistance by means of ToolTips.

Prerequisites
Before working on this lab, you must have designed forms in previous versions
of Visual Basic.

Scenario
In this lab, you will continue working with the Cargo system. The Customer
class from Lab 5.1 of Course 2373A, Programming with Microsoft
Visual Basic .NET (Prerelease), has been enhanced for you, and a
CustomerList class has been provided so you can iterate through the customers.
The basic Customer form has been provided for you, but it requires further
development.

Starter and Solution Files
There are starter and solution files associated with this lab. The starter files are
in the install folder\Labs\Lab061\Starter folder, and the solution files are in the
install folder\Labs\Lab061\Solution folder.

Estimated time to complete this lab: 45 minutes

Topic Objective
To introduce the lab.

Lead-in
In this lab, you will complete
the Customer form to
display a list of customers.

Explain the lab objectives.

50 Module 6: Using Windows Forms

Exercise 1
Extending the Customer Form

In this exercise, you will enhance the existing Customer form by using the
layout properties of the controls and form. The form is currently only intended
to retrieve customer information.

å To open the starter project

1. Open Visual Studio .NET.

2. On the File menu, point to Open, and click Project . Set the folder location
to install folder\Labs\Lab061\Starter, click Lab061.sln, and then click
Open.

å To add the Sub Main procedure

1. On the Project menu, click Add Module, and rename the file modMain.vb.

2. Open the modMain.vb code Editor.

3. Insert the following code.

Sub Main()
 Application.Run(New frmCustomer())
End Sub

4. In Solution Explorer, right-click Lab061, and then click Properties.

5. In the Startup object box, click Sub Main, and then click OK.

å To view the frmCustomer form

1. Open the frmCustomer.vb design window, and examine the layout of the
controls.

2. Open the frmCustomer.vb code window, and examine the existing code.

å To test the application

1. Open the Sub New procedure in frmCustomer.vb, and set a breakpoint on
the following line by using the F9 key:

custList = New CustomersList()

2. On the Debug menu, click Start.

3. Step through the code by using the F11 key (to step into procedures) and the
F10 key (to step over procedures) until you understand how the application
loads the customer information into the list. Press F5 to resume execution.

4. Click different customers in the list, and observe the resulting behavior.

5. Click Close to quit the application, and remove the breakpoint from the Sub
New procedure.

 Module 6: Using Windows Forms 51

å To set the layout properties of the controls

1. Open the frmCustomer.vb design window, and set the Anchor properties of
the following controls to the following values in the Properties window.

Control Anchor value

lstCustomers Top, Bottom, Left

txtID Top, Left, Right

txtEmail Top, Left, Right

txtTitle Top, Left, Right

txtFName Top, Left, Right

txtLName Top, Left, Right

txtAddress Top, Left, Right

txtCompany Top, Left, Right

btnClose Bottom, Right

2. Set the following properties for the form and controls in the Properties
window.

Object Property Value

txtAddress MultiLine True

txtAddress AcceptsReturn True

txtAddress Size.Height 60

frmCustomer CancelButton btnClose

3. Open the frmCustomer.vb code window.

4. Add the following line immediately before the end of the Sub New
procedure:

Me.MinimumSize = Me.Size

å To test the project
1. Run the project.

2. Resize the form to confirm that all controls are anchored correctly and that
the MinimumSize property limits the form size so that all controls are
visible.

3. Click the Close button to quit the application.

52 Module 6: Using Windows Forms

Exercise 2
Adding a Menu and ToolTips

In this exercise, you will add a menu and ToolTips to the frmCustomer form.

å To add a menu

1. Open the frmCustomer.vb design window.

2. Using the Toolbox, add a MainMenu control, renaming it mnuMain.

3. Using the Menu Designer, add menu items as shown in the following
illustration.

4. Use the following table to name the menu items.

Caption Name

&File mnuFile

&Load Customers mnuFileLoad

- mnuFileSeparator

E&xit mnuFileExit

5. Create the Click event handler for the mnuFileLoad menu item.

 Module 6: Using Windows Forms 53

6. From the Sub New procedure, cut the existing code for loading customers,
and paste it into the new event handler (making sure to leave the
MinimumSize code that was added in the previous exercise as it is). Your
code should now look as follows:

Public Sub New()
 MyBase.New()

 'This call is required by the Windows Forms Designer
 InitializeComponent()
 Me.MinimumSize = Me.Size
End Sub

Private Sub mnuFileLoad_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs)
 'Create the customerlist object
 custList = New CustomersList()

 'Load the customers
 custList.LoadCustomers()

 'Populate the list box with customers
 PopulateListBox()
 LoadCustomer(0)
End Sub

7. Locate the existing btnClose_Click event handler, and rename the

procedure CloseForm, leaving the arguments unchanged, and adding the
following statement after the existing Handles clause. This allows both
events to be handled by the same procedure.

, mnuFileExit.Click

8. Save the project.

å To add ToolTip user assistance

1. Open the frmCustomer.vb design window.

2. Using the Toolbox, add a ToolTip control, renaming it ttCustomerList.

3. Using the Properties window, set the ToolTip property for lstCustomers to
“Select a customer to display the full details.”

å To test the application

1. On the Debug menu, click Start.

2. On the File menu, click Load Customers .

3. Rest the mouse pointer on the Customer list to confirm that the ToolTip
appears.

4. On the File menu, click Exit to quit the application.

54 Module 6: Using Windows Forms

Exercise 3
Adding a Shortcut Menu

In this exercise, you will programmatically add a shortcut menu for the
customer ListBox control.

å To create the context menu
1. Open the frmCustomer.vb code window, and locate the Sub New procedure.

2. After the call to the InitializeComponent procedure, declare a
ContextMenu variable called cmListBox, and a MenuItem variable called
mItem.

3. Instantiate the cmListBox context menu object by using the default New
constructor.

4. Add a menu item to the context menu, as shown in the following code:

mItem = cmListBox.MenuItems.Add("&Delete")

5. Disable this menu item until there are entries in the list box, as shown in the
following code:

mItem.Enabled = False

6. Add an event handler for the new mItem object by using the AddHandler
function, as shown in the following code:

AddHandler mItem.Click, AddressOf onDeleteClick

7. Assign the new context menu to the ContextMenu property of the
lstCustomers control, as shown in the following code:

lstCustomers.ContextMenu = cmListBox

8. Before the Catch statement in the LoadCustomer procedure, enable the
context menu as shown in the following code:

lstCustomers.ContextMenu.MenuItems(0).Enabled = True

å To create the event handler for the context menu item

1. At the end of the form definition, create a new private subroutine called
onDeleteClick that accepts the following arguments:

ByVal sender As Object, ByVal e As System.EventArgs

2. Display a message box with the following options specified.

Argument Value

Text Are you sure you want to delete this customer?

Caption Confirm

Buttons MessageBoxButtons.YesNo

Icon MessageBoxIcon.Question

 Module 6: Using Windows Forms 55

3. Use an If statement to test the result of the MessageBox.Show method
against the value DialogResult.Yes. In the True section, enter the following
code:

custlist.RemoveAt(lstCustomers.SelectedIndex)
PopulateListBox()

4. Insert an If statement into the procedure to test to see whether the number of

items in lstCustomers is zero. (Hint: Use the lstCustomers.Items.Count
property).

5. In the True section, disable the Delete menu item.

6. Save the project.

å To test the application

1. On the Debug menu, click Start.

2. On the File menu, click Load Customers .

3. Right-click a customer and click Delete.

4. When the confirmation message appears, click Yes.

5. On the File menu, click Exit to quit the application.

6. Close and exit Visual Studio .NET.

56 Module 6: Using Windows Forms

If Time Permits
Creating an About Box Form Using Visual Inheritance

In this optional exercise, you will create an About box form by inheriting from
an existing base form.

å To add the base form to the project
1. Open your solution to the previous exercise.

2. On the Project menu, click Add Existing Item.

3. Click frmBase.vb in the starter folder, and click Open.

4. On the Build menu, click Rebuild All.

å To inherit the base form

1. On the Project menu, click Add Inherited Form, renaming the file
frmAbout.vb.

2. In the Inheritance Picker dialog box, click frmBase, and then click OK.

3. Open the frmAbout.vb design window.

4. Change the Text property of the lblProductName control to Cargo.

å To display the About box form
1. Open the frmCustomer.vb design window.

2. Add the following menus to the mnuMain control.

Caption Name

&Help mnuHelp

&About… mnuHelpAbout

3. Create the Click event handler for the mnuHelpAbout menu item, and add
the following code:

Dim aboutForm As New frmAbout()
aboutForm.ShowDialog()

4. Save the project.

å To test the About box form

1. On the Debug menu, click Start.

2. On the Help menu, click About.

3. Click OK to close the About Form dialog box.

4. Click Close to quit the application.

 Module 6: Using Windows Forms 57

Review

n Why Use Windows Forms?

n Structure of Windows Forms

n Using Windows Forms

n Using Controls

n Windows Forms Inheritance

1. Identify some of the benefits of Windows Forms.

Rich set of controls, GDI+ support, advanced layout possibilities,
accessibility support, advanced printing support, visual inheritance,
extensibility.

2. The ContainerControl class is the fundamental base class for all other
controls. True or false?

False. The Control class is the fundamental base class for all other
controls.

3. Write the code to access the path from which an executable is running.

Dim strAppPath as String

strAppPath = Application.StartupPath

4. Describe an owned form.

An owned form is always displayed on top of its owner. It is minimized
or closed when the owner is minimized or closed.

Topic Objective
To reinforce module
objectives by reviewing key
points.

Lead-in
The review questions cover
some of the key concepts
taught in the module.

58 Module 6: Using Windows Forms

5. Write code to make the code behind a button called btnOK execute when a
user presses RETURN.

Me.AcceptButton = btnOK

6. List two ways to provide Help to the user.

ErrorProvider, HelpProvider, or ToolTip controls.

7. Write code to create a Help menu with one menu item— About— at run
time.

Dim mnuMain As New MainMenu()

Dim mnuItem1 As New MenuItem()

Dim mnuItem2 As New MenuItem()

mnuItem1.Text = "Help"

mnuMain.MenuItems.Add(mnuItem1)

mnuItem2.Text = "About"

mnuMain.MenuItems(0).MenuItems.Add(mnuItem2)

AddHandler mnuItem2.Click, AddressOf AboutClick

Menu = mnuMain

